
AD-A230 580

Gabor Filters and Neural Networks for

Segmentation of Synthetic Aperture Radar Imagerv

>-ECTE

DEPARTMENT OF THE AIR FORCE E
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

W right- Patterson Air Force Base, Ohio

7 'S'r PJUTION STA~h~
Aprv, Io pub~c ~ 91 1 3 143

AFLT/GE/ENG,190D-31

Accession For
-iiIS GRA&
DTIC TAB
Unannounced 0l
Just if icatioa

By-

Distribut ion/

Availability Codes
;rv.-il and/or

Dist~ spocial

Gabor Filters and Neural Networks for

Segmentation of Synthetic Aperture Radar Imagery PL-

THESIS

Albert P. L'Homme
Captain, USAF

AFIT/GE/ENG/90D-31

Approved for public release; distribution unlimited

AFIT/GE/ENG/90D-31

Gabor Filters and Neural Networks

for Segmentation of Synthetic

Aperture Radar Imagery

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

Albert P. L'Homme, B.S.E.

Captain, USAF

December, 1990

Approved for public release; distribution unlimited

Acknowledgments

I want to thank the many people who provided support and encouragement

throughout my research. Much thanks and gratitude go to my thesis advisor Maj

Steven Rogers whose ideas were the foundation of this research. His continued

encouragement, helpful guidance and unending enthusiasm focused my efforts. I

would also like to thank Dr Matthew Kabrisky and Maj Rogers for their enlightening

pattern recognition courses. These courses have opened my eyes to a whole new

aspect of engineering.

A deeply felt thanks goes to my sponsors, Kevin Willey and Mike Bryant

from the Automatic Target Recognition Technology Group, Aeronautical Systems

Division Wright-Patterson AFB OH. Their continued efforts to provide support and

suggestions were beneficial in the success of this thesis. The unlimited use of their

state of the art lab is highly appreciated. I also would like to thank Capt Joe Brickey

for his suggestion to research segmentation of synthetic aperture radar imagery, and

for his continued encouragement and helpful comments.

Finally, I want to thank my wife Deanna and children, Albert, Katie, Sarah,

and Joey for their love, patience, and understanding. They were my pillars of

strength.

Albert P. L'Homme

ii

Table of Contents

Page

Acknowledgments.....

Table of Contents.....

List of Figures vi

List of Tables ix

Abstract. x

I. Introduction. 1

1.1 General 1

1.2 Problem Statement. 4

1.3 Background. 5

1.4 Definitions 6

1.5 Scope. 7

1.6 Assumptions 8

1.7 Hypothesis 8

1.8 General Approach 8

1.9 Sequence of Presentation. 9

II. Literature Review 10

2.1 Introduction 10

2.2 The Gabor Transform. 11

2.2.1 Discovery. 11

2.2.2 The Biological Connection. 13

111

Page

2.2.3 Texture Discrimination 15

2.3 Radial Basis Functions 17

2.3.1 What are RBFs 17

2.3.2 Past Research Results 18

2.3.3 Conclusions Presented from Prior Research 19

2.3.4 Conclusions 19

III. Implementation Methodology 21

3.1 Introduction 21

3.2 Gabor Implementation 21

3.3 Kohonen Clustering 24

3.4 Class Identification Using Radial Basis Functions 28

3.5 System Description 29

3.5.1 Introduction 29

3.5.2 Building Templates 29

3.5.3 Applying Gabors 29

3.5.4 Preliminary Segmentation Evaluation and Additional

Preprocessing 32

3.5.5 Clustering the data using a Kohonen Network . . 33

3.5.6 Radial Basis Function Processing 33

IV. Experimental Applications and Results 35

4.1 Gabor Processing 35

4.1.1 Images Processed During This Research 35

4.1.2 Basic Processing Methodology 38

4.1.3 Ad Hoc Gabor Filter Selection 38

4.1.4 Using FFTs to Determine Frequency and Rotation

Angles 40

4.2 Kohonen Processing 52

iv

Page

4.2.1 Overview. 52

4.2.2 Training and Calibration 53

4.3 Radial Basis Function Processing 56

4.3.1 Comparison With Image Templates 57

4.3.2 RBF Network Results 61

V. Conclusions and Recommendations. 68

5.1 Introduction 68

5.2 Further Research 69

Appendix A. Other RBF Results 71

Appendix B. Software 77

B. 1 Gabor Code 77

B.2 Kohonen Calibration Code. 90

Bibliography 106

Vita 109

V

List of Figures

Figure Page

1. Sample ADTS Image 6

2. Kohonen Neural Network Architecture 25

3. Two Dimensional RBF Clustering Environment. 29

4. Block Diagram of Methodology. 30

5. Original SAR Log Mapped Image m85f27 36

6. Original SAR Log Mapped Image m85f28 36

7. Original SAR Log Mapped Image m98f08 36

8. Original SAR Log Mapped Image m98fO9hh 37

9. Original SAR Log Mapped Image m98fllhh 37

10. Original SAR Log Mapped Image m98fl2hh 37

11. Image m9808, Freq 2, Rotation 0 39

12. Image m85f27, Freq 2, Rotation 0, threshold 132 39

13. Image m85f27, Freq 2, Rotation 0, threshold 142 40

14. Freq 0.5, Rotation 0, Msn 85 Frame 27 44

15. Freq 0.707, Rotation, Msn 85 Frame 27. 45

16. Freq 1.000, Rotation 0, Msn 85 Frame 27 45

17. Freq 1.414, Rotation 135, Msn 85 Frame 27 45

18. Freq 1.5 Rotation 0, Msn 85 Frame 27 45

19. Freq 2.0 Rotation 0, Msn 85 Frame 27 46

20. Freq 2.828 Rotation 45, Msn 85 Frame 27. 46

21. Image m85f28, Freq 0.500, Rotation 0 46

22. Image m85f28, Freq 0.707,Rotation 45 47

23. Image m85f28, Freq 1.000, Rotation 0 47

24. Image m98f09 47

vi

Figure Page

25. Imag(,.,98f09, Freq 0.500, Rotation 0 48

26. Image m98f09, Freq 0.707, Rotation 45 48

27. Image m98f09, Freq 1.000, Rotation 0 48

28. Image m98f09, Freq 1.414, Rotation 135 48

29. Image m98f09, Freq 1.500, Rotation 0 49

30. Image m98f09, Freq 2.000, Rotation 0 49

31. Image m98f09, Freq 2.828, Rotation 45 49

32. Tweaked Image m98f08, Freq 0.500, Rotation 0 50

33. Tweaked Image m98f08, Freq 0.707, Rotation 45 50

34. Tweaked Image m98f08, Freq 1.000, Rotation 0 50

35. Experimental Image m98f09, Freq 1.0, Rotation 0 51

36. Experimental Image m98f09, Freql.0, Rotation 15 51

37. Threshold 121 51

38. Threshold 62 52

39. Difference 52

40. Sample Training Regions 54

41. Remapped Grayscale Image m85f27 55

42. Sampled Image Using Max Value From 16 by 16 Block 56

43. Sampled Image Using Max Value From 8 by 8 Block 57

44. Hand Segmented Image m85f28 60

45. RBF Segmentation of F28, Trained on F28 60

46. RBF Segmentation of F28, 5 x 5 Median Filter 61

47. Percent Agree vs Average Threshold 63

48. Number of Nodes vs Average Threshold 63

49. Percent Agree vs Sigma Threshold 64

50. Percent Agree vs Sigma Factor 64

51. Percent Agree vs Interference Threshold 65

vii

Figure Page

52. Average Threshold of 0.6, Trn F28 Test F27 65

53. Average Threshold of 0.6, Trn F28 Test F27, 5 x 5 Median Filter . . 66

54. RBF Segmentation of F27, Trained on F28 66

55. RBF Segmentation of F27, Trained on F28, 5 x 5 Median Filter . . . 67

56. Hand Segmented Image m85f27 72

57. RBF Segmentation of F27, Trained on F28 72

58. RBF Segmentation of F27, 5 x 5 Median Filter 73

59. Hand Segmented Image m98f11. 73

60. RBF Segmentation of Fli, Trained on F28 74

61. RBF Segmentation of F1l, 5 x 5 Median Filter 74

62. Hand Segmented Image m98f12 75

63. RBF Segmentation of F12, Trained on F28 75

64. RBF Segmentation of F12, 5 x 5 Median Filter 76

viii

List of Tables

Table Page

1. SAR Imagery Frequency Analysis 43

2. Tweaking the Bandwidths 44

3. RBF Trained Image Msn 85 F28 58

4. RBF Trained Image Msn 85 F28 After Median Filtering 59

5. Scaled Result, RBF Trained Image Msn 85 F28 59

6. Scaled Result, RBF Trained Image Msn 85 F28 Median Filtered . . . 60

ix

AFIT/GE/ENG/90D-31

Abstract

This research investigates Gabor filters and artificial neural networks for au-

tonomous segmentation of (1 foot by 1 foot) high resolution polarimetric synthetic

aperture radar (SAR). Processing involved frequency correlation between the SAR

imagery and biologically motivated Gabor functions. Methods for selecting the Ga-

bor tuning parameters from the endless choices of frequency, rotation, standard

deviation and bandwidth are discussed. Using these parameters, resulting Gabor

correlation images were reduced in speckle, and more detailed than the original SAR

images. This research used cosine Gabor functions and operated on single polar-

ization HH magnitude data. Following selection of the appropriate Gabor features,

multiple Gabor representations were generated and converted for ANN training. Net-

works investigated were the Kohonen and radial basis function (RBF) algorithms.

Provided are results demonstrating a Kohonen network calibration technique and

how combination of Gabor processing and RBF networks provide scene segmenta-

tion.

x

Gabor Filters and Neural Networks

for Segmentation of Synthetic

Aperture Radar Imagery

L Introduction

1.1 General

For over twenty-five years, the Air Force Institute of Technology (AFIT) has

been involved in research to develop an autonomous target recognizer (ATR). The

hope is to develop a machine capable of determining from on-board sensor informa-

tion where hostile targets are located within a scene.

To date, many techniques have been developed which provide limited solutions

to object or texture recognition by machines. Complete machine recognition re-

mains an unsolved problem. Limited recognition machines operate in relatively low

noise and controlled environments such as supermarkets and industrial production

lines. The environment for these machines often control object scale, orientation and

position so the features are easier to extract.

The development of a target recognizer is considerably more complex. These

machines will typically be housed in missiles, aircraft or spacecraft. In these appli-

cations, the environment is no longer controllable which creates new data processing

problems. Conditions such as extreme noise and temperature, dusty surroundings,

and as well as need of fast processing conditions drastically affect the analysis tech-

niques that can be applied.

The ability of a target recognition machine to scan an image and pull out cul-

tural items, such as targets, requires obtaining good sensor information. Assuming

1

high quality sensor information is available, templates or algorithms must be es-

tablished that can separate interesting objects from background clutter. In hostile

environments, models often require updating as the topography changes.

In comparison, people are trained from childhood to segment the world. Through-

out life, recognition models are updated to classify and associate new objects. This

is quite the type processing automatic pattern recognition devices are attempting

to provide. Target recognizers must distinguish between background clutter, non-

military cultural objects, and specific military targets. Military targets are usually

items such as howitzers, tanks, planes and missile launch sites.

Even with the long list of problems requiring solutions, it seems reasonable that

machines can be developed to automatically find interesting objects from a scene,

focus on them, and categorize them as non-target, target and type target. Popular

theory suggests

the detection and classification of targets is basically a three step pro-
cess. The first step, is the segmentation of an image to identify potential
targets. The second, is the extraction of features of each distinct re-
gion within an image. The final step, is the use of these features in the
classification process.(20)

Earlier, it was mentioned that methods have been developed which are useful

in the target recognition processing. A few of these are

" Taxi, Euclidean and dot product distance rules

* Image Filtering (median and low pass filtering)

" Fast Fourier Transform

" Correlation.

Often, these methods are applied in "ad hoc fashion" (10) to solve pieces of

the pattern recognition problem. An example of this, is the AFIT algorithm which

2

developed a position, scale and rotation invariant (PSRI) feature space. The PSRI

problem is common to the area of target recognition.(13)

To get to the target recognition step, first cultural or man made objects must

be segmented from the scene and features extracted from these. Typically sensor

images are composed of millions of data bytes and most require processing. When

multiple pattern recognition techniques are applied to extract objects and features

powerful workstations are needed. Application of these techniques in an laboratory

environment demonstrates the need for powerful processing. It is understood imple-

mentation of these processes in silicon or optics quicken processing time, but even

these implementations would fall short of providing real time scene segmentation

and image recognition for operational military platforms. With this gap between

need and technological feasibility, pattern recognition research has become deeply

involved in biological information processing and in particular artificial neural net-

work research. (22)

Today most computers are Von Neumann based binary machines, and quite

often measure their performance in million of operations per second. Even so, it

seems apparent Von Neumann machines may never provide real time performance

on massively complex pattern recognition processes.

Modern technology often compares computer processing capability to biological

processing. Today artificial neural network research is attempting to mimic some of

these processes. Many alternate computer architectures have been investigated and

compared to neural processing. In 1943, McCulloch and Pitts published a paper

discussing problems associated with computer science and brain modeling theory.(19)

They presented models where output was based on receiving inputs above a certain

threshold.(19) Over the years, research has continued into processing based on this

type of weighted computation and is the basis for artificial neural networks (ANNs).

Until recently ANNs weren't believed to be implementable. However, present day

computing power has allowed simulations of artificial neural processing to advance

3

at an amazing rate.

As mentioned above, ANNs provide a method of computation based on weighted

summations of input data rather than the binary calculations processed by Von Neu-

mann machines. ANNs are usually based on some mathematical algorithm attempt-

ing to achieve macro or micro-functions found in a biological process. In biological

processing, neurons are the basic information processing cell. These cells are densely

interconnected to allow for parallel information processing. Output from biological

cells provide approximate analog results based on summation or combination of the

weighted inputs.

With the uncertainty of Von Neumann type processing to achieve an inde-

pendent machine target recognizer, ANNs are being researched to determine their

applicability. Past research here at AFIT has demonstrated the usefulness of these

networks in target recognition.(20) A comparison was made between the recognition

results of conventional versus ANN recognizers. It was determined ANN recogniz-

ers performed equally well in the identification process.(20) With results found to

date, densely connected neural network processors by themselves or in combination

with traditional processor techniques show promise for implementation as machine

recognition systems.

This thesis is part of the continuing ANN research into the automatic target

recognition (ATR) problem. Investigation is to determine features and processes

useful for segmentation of radar imagery. Research here combines the biologically

motivated Gabor transform and ANNs. These techniques are evaluated in combina-

tion to determine their are validity to the radar imagery segmentation process.

1.2 Problem Statement

This thesis applies biologically motivated pattern recognition processes to seg-

mentation of high resolution SAR data. The two main processes are scene correlation

with two-dimensional Gabor filters and scene separation using artificial neural net-

4

works. The major thrust of this research investigates the combination of Gabor

filter texture matching with artificial neural network data separation techniques.

Segmentation here attempts to find features capable of separating different natural

regions and identifying cultural regions from images. To accomplish these tasks,

many questions must be answered. These include:

* Is there a particular orientation, pitch or combination of Gabor filter(s) which

correlate well with trees, and still others with fields?

" How are these frequencies, rotations, and combinations selected?

" What size Gabor filter provides the best segmentation of this imagery?

* What is the best method to train the Kohonen network to maximize data

separation?

* Is there a particular Kohonen neighbor and conscience rule which combines to

quicken or increase the separation provided by this type net?

" How is the Kohonen network calibrated?

" Does a Kohonen/radial basis function hybrid network provide automatic cali-

bration of the Kohonen and data classification?

" What are the proper training features for ANN input?

1.3 Background

The data used during this research was collected using a high resolution syn-

thetic aperture radar (SAR) sensor. The data was been provided by the Mas-

sachusetts Institute of Technology (MIT) Lincoln Labs through Wright Research

and Development Center (WRDC/AARA), and was collected as part of the Ad-

vanced Detection Targeting Sensor (ADTS) tests conducted at Stockbridge New

York and Portage Lake Maine. The data was collected during ADTS Mission 85 and

98. The sensor used was a 0.3 m by 0.3 m resolution, full polarimetric SAR operat-

ing in the stripmap mode. The data is expressed in complex format (in-phase and

5

Figure 1. Sample ADTS Image

quadrature). Ground truth information was not available for this imagery; however,

a limited number of photographs were available to aid in determining the segmenta-

tion effectiveness of the researched techniques. Figure 1.3 is an example of the SAR

imagery to be operated upon during this research.

Unclassified 1 foot by 1 foot high resolution SAR imagery is rare, and as seen

from 1.3, the majority of the provided data set imagery is composed of landscape

and occasional man made items. This image is of a horse ranch with a nearby road

and pond (lower right). Of the data available, this was the only image providing

some form of cultural structure. Most images contained forests, fields, and shadow

with occasional roads, or corner reflectors.

This thesis basically performs feasibility tests to determine the usefulness of

combining ANNs and Gabor filters for radar imagery region segmentation. It is

hoped segmentation of the following regions can be provided: t-'!es, fields, shadows,

ponds, roads, and cultural objects.

1.4 Definitions

Segmentation is the process of dividing up a scene based on the image structure to

identify areas of interest.

Distance rules are used to measure data separability and for determining winning

nodes within a ANN environment.

6

Feature extraction involves methods for enumerating specific traits of objects or

image areas. Feature extraction is a main factor in ANN classification.

Correlation is a measure of similarity between two objects.

A Kohonen neural network refers to an algorithm developed by Teuvo Kohonen

which is claimed to promote data self organization. Self organization is a

process that occurs in higher levels of learning.(12)

Learning rule is an algorithm used to calculate and update weighted inputs to neural

nodes.

Network convergence refers to the ability of the neural network to train and learn

a separation process.

Conscience is a network node monitoring process which checks for excessive winning

by the nodes. If a node wins excessively, it is suspended from competition for

a period of time. Conscience is often used in Kohonen networks.

Neighborhood update rule is a weight updating technique commonly used in Ko-

honen network training. That is, using a neighborhood update rule modifies

the weights of a block of nodes within the current neighborhood of the winner.

This technique sometimes helps the convergence process.

Radial basis functions are a form of competitive learning where weight updates

are proportional to how well the competitor performed in competition.(16)

Typically these networks place radial function in the feature space to divided

up the data.

1.5 Scope

A major focus of this research investigates which combinations of Gabor filters

provide the best ANN input feature set. Following selection, these feature vectors

are applied to Kohonen, and radial basis function networks for clustering and class

identification.

7

1.6 Assumptions

It is assumed:

" Segmentation can be achieved using magnitude only of the HH SAR polarized

image.

" Separate spatial frequencies can be determined which strongly match each of

the regions.

" Kohonen networks provide clustering that aid data class identification.

1.7 Hypothesis

" Gabor processing and ANNs will provide SAR imagery segmentation.

" Combining selected Gabor frequencies and orientations are valid features to

train ANNs for image segmentation.

" The ANN trained Gabor features are robust enough to be used to segment

other SAR images.

1.8 General Approach

Initially, investigation will determine which set of Gabor filters provides the

best input features for ANN training. A bank of these filters of various orientation,

pitch and frequency are correlated with a selected image and saved as Gabor cor-

relation coefficient data files. The resultant files are combined into vectors of pixels

and fed into the network for training. These features are used to train Kohonen

and radial basis function networks. Once network training is complete, the output

wCights ait icmpped to a segmented grayscale image. An additional calibration

step is required for remapping trained Kohonen weights to grayscale images. Follow-

ing training, other images can be Gabor processed through correctly trained weights

and segmented.

8

1.9 Sequence of Presentation

Chapter II provides a literature review of Gabor transform research, and dis-

cusses the Kohonen and radial basis function networks as implemented.

Chapter III presents methodology used for this research. Provided is a de-

scription of the Gabor equations applied, techniques to determine the Gabor spatial

frequency and orientation, Kohonen network equations, and radial basis function

methodology.

Chapter IV discusses the results and analysis of this research.

Chapter V presents conclusions and recommendations for further research.

9

II. Literature Review

2.1 Introduction

This chapter reviews literature found useful for application of the Gabor func-

tion, and radial basis functions. The perspective of interest is for application of these

techniques to the segmentation of high resolution synthetic aperture radar imagery.

Recall, segmentation is the processing of data to separate objects of interest from

background regions, or textures. Pattern recognition has been described as a "com-

bination of ad hoc steps " put to use to solve a particular data problem.(10:2) Some

of the various techniques used during this thesis include:

" Euclidean distance rule is used to measure the separability of data.(10:6-7) The

Euclidean distance is implemented in the Kohonen network for the distance

calculations between the Kohonen layer weights and input vectors.

" Median filtering, Gaussian blurring, maximum filtering, minimum filtering, and

equalization are used to evaluate the segmentation provided by single Gabor

filter representations of a given SAR image.

" Fast Fourier Transforms (FFTs) convert the original image and Gabor filters

to their frequency domain representations for the correlation process.

* Artificial Neural Networks are applied to learn the underlying structure of the

resulting Gabor data for clustering and class categorizing.

Recent pattern recognition research here at AFIT is keenly involved in neural

networks and the Gabor transform. Both of these techniques are motivated by

biological processes. Neural networks are based on the weighted communication

between neurological cells.(19:21-30) This interneuronal communication is believed

10

to be the basis of thought processes of the brain. Artificial neural networks are

an attempt to process data in a fashion which mimics macroscopic or microscopic

functions of the brain. This is not meant to imply that ANNs implement algorithms

identical to those operating in our brains, but are simply trying to perform similar

data operations. For example, the perceptron's non-linear function is just that, a

non-linear function, and does not implement the exact algorithm which relays data

between biological neurons.(19) As with neural networks, the Gabor function has

found merit in neurophysiology. Specifically, interest in the Gabor function results

from recent research demonstrating its close approximation to measured responses

in the visual cortex of cats.(25)

This review covers literature concerning the topics mentioned above. Provided

is a background discussion on the origin of the Gabor function, its connection to the

visual cortex, and usefulness to pattern recognition. Literature covering radial basis

functions (RBF) is presented to describe typical implementations and results from

past RBF research.

2.2 The Gabor Transform

2.2.1 Discovery Dennis Gabor published his three part article "Theory of

Communications" in 1946. In part one, Gabor described a new analytical technique

for the communications field. He felt our intuitive sensations, especially the auditory

tract, make concurrent use of both time and frequency information. Even though

there are benefits to conventional analytical techniques, Gabor felt simultaneous de-

scription of signals both in time and frequency would provide additional information

not available when analyzing signals as mutually exclusive events. Upon this ba-

sis, Gabor proposed his "elementary functions". He provided substantiating proof

showing any signal could be represented by using these functions. His mathematical

11

proof made use of quantum theory and Heisenberg's time/frequency relation,

AtAf 1 (1)

In his article, Gabor defined the following equations as the basis for his ele-

mentary functions:

the time relation:

7f(t) = exp[-a 2(t - t.) 2]cis(2wrfot + 4)) (2)

the frequency relation:

72

T(f) = ep[-(-)(f - fo) 2]cis[-27rto(f - f0) + 4)1 (3)

where:

cis(27rfot + 4) = exp[j27rfot + 0)] (4)

where a refer to the pulse sharpness, to to the time when the pulse peak occurs, f0

to the sinusoidal frequency, and phi the phase of the sinusoidal modulator. Gabor

noted that

these elementary signals assure the best utilization of the information
area. They possess the smallest product of effective time duration by ef-
fective frequency width giving these functions optimal reciprocal resolution.(8)

Gabor's goal was to find a method which made more efficient use of the frequency

bands. With this in mind, Gabor investigated the reception, and data recognition

rate of the human ear. In his second paper, he described experiments performed on

the recognizability of speech. He found the maximum recognition rate of the human

ear to be dependent upon the signal frequency. One of his findings showed the human

12

ear only distinguishes about 42 % of the information presented in the frequency range

from 0 to 1000 hertz. This rate dropped off nonlinearly to about 15 % at 8000 hertz.

He felt this attribute of the auditory system could be tricked by some technique. (8)

With this notion, Gabor went to work to determine an information compression

technique to meet both human auditory and frequency band specifications.

In his third paper, Gabor presented both a mechanical and an electrical tech-

nique for speech compression and expansion. Based on his proposEd elementary

functions, both techniques proved to be effective methods for signal compression

and expansion with little loss in intelligibility. (8) Nearly thirty years passed before

Gabor's work was extended to two dimensional image processing.

2.2.2 The Biological Connection Recently, "vision research has been

enlivened by debate" over the fundamental character of the visual system. (5:1160)

Daugman felt Dennis Gabor's work provided the clearest insight to the mathematical

representation of the visual system. (5:1160) Porat and Zeevi view the mathematical

completeness of the Gabor scheme, and the closeness of fit to the localized frequency

and phase response of physiological and psychophysical processing, make the Gabor a

worthy candidate as a computer vision algorithm. (17:432) Daugman and others have

demonstrated how this family of two-dimensional (2D) filters provide an accurate

description of the "various 2D receptive-field profiles encountered in simple cells

within the mammalian visual cortex ". (5:1168) Webster and De Valois found this

to be impressive considering the diversity of these cells. However, they too have

matched the Gabor like characteristics of these cells, and believe this model to be

sufficiently general to account for this variety. (25:1130) Jones and Palmer found the

Gabor function, and the response of simple cells within the cat striate cortex to be

indistinguishable in 33 of 36 tests. (9)

As a point of clarification, Gabor's mathematical notation is no longer used by

researchers. Today, the one dimensional Gabor time relation is commonly written

13

as

h(t) = exp[-[t2 /(2A 2 a 2)]]cos(27rFt) (5)

where t is once again the time of occurrence of the peak, F the frequency of the

modulator, a the Gaussian decay term and A the aspect ratio. (3:57-58) Daugman

expanded this into a two-dimensional relations for both the spatial and frequency

domains.

Daugman's spatial relation:

f (XIY) =exp[-ir [(X _ X)ca + (Y _-.101

exp(-_rj[uo(x - x,) + vo(y - yo)]) (6)

Daugman's frequency response:

F(u, v) = exp[-7r[(u - Uo) 2 /C + (V - Vo)1/0 2]

exp(-2wj[x0 (u - uo) + yo(v - v,)]) (7)

Daugman defined the 4-D fundamental uncertainty principle as "the theoretical lower

bound of joint uncertainty.., in the visual space and spatial frequency domains" as:

(Ax)(Ay)(Au)(Av) _ 1/(167r2) (8)

Daugmar noted the 2-D Gabor filters achieved the lower bound of this inequal-

ity. (5)

14

Up to 1985 there had been only limited research into matching the 2-D Gabor

filter with the striate cortex. However even at that time, researchers felt the four

degrees of freedom known to be associated with visual cortex seemed to be mod-

eled rather well by the 2-D Gabor representation. (5:1168) Continued investigation

consistently supports this function to model the visual cortex and hence machine

vision.

2.2.3 Texture Discrimination Extending use of these filters to texture

discrimination (3), computer vision (17), and the detection of transient signals (7)

has been a logical undertaking. Each of these processes can take advantage of the

information encoding provided by the Gabor family of filters. Some benefits to be

gained from these filters are their ability to increase the signal to noise ratio, provide

for signal compression and expansion, and information representation for further

processing. (3:62)

At a global scale of perception, texture is regarded simply as a carrier of
region information. Within this framework, the local structure of texture
is described by the orientations and frequencies of the carriers, whereas
information describing the spatial extent of the texture is contained in
the envelopes of the channel outputs.(3:56)

Research by Bovik and others has shown that using an appropriately dense field of

Gabor filters encodes an image into subimages which can be precisely recovered. The

cost associated with using these filters results in the loss of the high frequency or local

structure of the image; however, the spatial description of the texture held within

the channels is maintained. Comparison of these channels provides image texture

segmentation. Bovik and others noted this segmentation process can be simplified by

using a hierarchy of filters to reduce the sampling density before performing channel

comparisons. (3)

15

Porat and Zeevi developed a scheme for image representation (machine vision)

in a combined space/spatial-frequency domain using the optimal properties of the

Gabor function. They employed the biorthogonal function of Bastiaans (2) as a tech-

nique to sample both one and two dimensional signals. Porat and Zeevi showed that

using only six Gabor coefficients allowed high quality reconstruction of both periodic

and aperiodic signals. They also found under certain conditions Gabor coefficients

provide for better reconstruction of aperiodic signals than periodic. They attributed

this to a mismatch between the Gabor sampling frequency, and the frequency of the

aperiodic signal. (17)

Studying the affects of Gabor quantization on a signal's phase, Porat and Zeevi

showed as little as five quantization levels provided good reconstruction (approxi-

mately 93 %). However, as the number of quantization levels increased, better results

were made. Twenty-four levels yielded about 99.7 % accuracy. One particular ex-

periment looked into the oversampling of the time dimension while correspondingly

decreasing the sampling along the frequency dimension. They noted a tradeoff be-

tween the number of spatial and frequency samples necessary to effectively sample

and reproduce the original waveform. At this point, they seemed reluctant to at-

tribute this tradeoff to the uncertainty principle. Rather, they felt it more a necessity

to maintain localized spatial and frequency characteristics. To expound this point,

Porat and Zeevi considered a d.c. signal. They found this type signal requires quite a

number of high frequency Gabor coefficients for a good approximation. They pointed

out, once the global frequency band of the signal is properly sampled then an ex-

change can be made between the out of frequency band components and additional

spatial samples. (17)

With this result, their research carried them to the 2-D world of image pro-

cessing. Their next experiments were performed using the polar representation, and

made use of a limited number of quantization levels to ease the computational load.

Once again, their results confirmed the space/frequency tradeoff, and found image

16

quality to be based on the dirrensionality of the image as well as the degrees of

freedom available in the Gabor representation. (17)

Benjamin Friedlander and Boaz Porat looked into the detection of transient

signals using Gabor filters. They too made use of Bastiaans one-sided exponential

Gabor representation. They felt this representation to be better suited to the de-

tection of random signals. Using this technique, Friedlander and Porat sought to

determine transient signals in the presence of noise while varying transient param-

eters such as arrival time and frequency of occurrence. Additionally, parameters of

the Gabor detectors were varied to include the sampling interval, aspect ratio, and

the number of Gabor coefficients. (7)

In their analysis, Friedlander and Porat looked to determine the affect of each

Gabor function parameter change on the detection capability. In each case presented,

Friedlander and Porat showed Gabor functions provided extremely good transient de-

tection. In four of the seven experiments, the detection was nearly perfect. However,

as the parameters become more mis-matched (that is window mismatch, frequency

and noninteger arrival time) caused a noticeable decrease in the signal to noise ratio.

Even with this type of mismatch, the transient peaks were well above the noise.

The most drastic change resulted from variation in frequency rather than in arrival

time or window variations. They concluded that for transient detection, a block or

sequence of detector cells would provide for a more "robust" detector. (7)

2.3 Radial Basis Functions

2.3.1 What are RBFs... Radial basis functions (RBF), according to Moody

and Darken (14), are a departure from the traditional McCullough and Pitts neu-

ron. A McCullough and Pitts neuron provides summation of vector inputs through

a threshold device to determine its boolean output. The radial basis function neuron

represents localized Gaussian regions (receptive fields). RBF activation is provided

by placement of the Gaussian centers (mean) and establishment of its inclusion

17

region (standard deviation). Moody and Darken, note these overlapping regions

are reminiscent of those localized receptive fields found in numerous regions of the

cortex. (14:131-134) Research performed by Moody and Darken used radial basis

functions for prediction of the Glass-Mackey time series. They demonstrated RBFs

require less training time while still achieving accuracy equivalent to the multi-layer

perceptron.

Nowlan introduces the difference between soft and hard RBF network learning

algorithms. Hard learning was defined to be updating weights based on the winner

take all, and soft referred to weight updates based proportionally to the present input

vector's strength. Nowlan made use of these functions in a one hidden layer network.

The input to the hidden layer used a radially symmetric function (RBF) to compute

the distance between the current input vector and hidden layer node weights. The

output layer used a linear conversion of outputs from the hidden layer. (16:1-2)

Nowlan also described techniques for placing the RBF centers. One places the

centers based upon adaptation from the input vectors using a K-means center se-

lection then "adjusting the size of the RBFs for smoother interpolation". A second

technique is a variation of the k-means rule using a two step process to make assign-

ment based on the closest mean then recalculating the means as an average of the

samples within its class. This last version is known as the Batch version. (16:2-6)

RBF training is accomplished using bidirectional information. That is the RBF

centers are determined by some clustering algorithm (k-means, Kohonen ...) while

the receptive strengths are found using feedback from a least mean square (LMS)

rule. (14:136)

2.3.2 Past Research Results Radial basis functions have been used in time

series predictions, hand written digit identification and vowel utterance recognition

systems. Moody and Darken evaluated use of RBFs to estimate the Mackey-Glass

chaotic time series. Nowlan made use of RBFs for digit recognition. Nowlan made

18

use of various combinations of soft, hard, spherical, and elliptical Gaussian RBFs and

found the soft Gaussian resulted in percentages of correct classifications approaching

those obtained by a linear back propagation net. Results of the digit recognition ex-

periment showed the soft learning rule gave best RBF results coming only fractional

percentage points shy of the back prop net. This improved performance was true

across all RBF variations (spherical or elliptical Gaussians). In Moody and Darken's

vowel recognition experiment, the soft classifier again performed better than the

hard. However, use of normalization within the hard classifier scheme provided half

the improvement between the percentage correct for the hard and soft classifiers.

2.3.3 Conclusions Presented from Prior Research Moody and Darken

concluded that when data is abundant RBFs are able to achieve accuracies achieved

by back propagation nets; however, for scarce data back propagation is their pre-

ferred technique. (14:141) Nowlan concludes that exact or soft maximum likelihood

techniques out perform the winner-take-all. The increase in accuracy comes with

only slightly longer processing times. Normalization also seems to improve RBF's

performance by a couple of percentage points. Nowlan points out that the digit

classification problem illustrates how RBFs can be used in high dimensional input

space. (16:9-11)

2.4 Conclusions From the Literature

From its basis almost half a century ago to its renaissance in vision research,

the Gabor function continues to show promise as an effective tool. Dennis Gabor

demonstrated how his elementary functions could make more efficient use of the

frequency spectrum by compressing then expanding communication signals. This

literature review has shown some substantiating proof of the usefulness of the Gabor

transform for vision research, texture discrimination, machine vision, and transient

signal detection.

19

cluster data. Their speed in the training process and ability to be used in high

dimensional and abundant data applications make them attractive for use in image

segmentation.

20

III. Implementation Methodology

3.1 Introduction

Thi. chapter describes the processes used during this thesis. It develops the

Gabor equations as presented by the Bovik article (3), and discusses filter selection

techniques. This is followed by a description of the Kohonen network equations used

and the plan for Kohonen layer calibration. Additionally, the radial basis function

network implementation is described. Finally, the overall system is presented from

image input and network training to image segmentation and testing.

Recall, the data operated upon during this research is high resolution (lfoot

by 1foot) Synthetic Aperture Radar imagery. Each frame of data is presented in four

files where each file is the complex (quadrature) representation of a single polarization

(HH, HV, VH, VV). This thesis concentrates on the texture matching ability of

Gabor filters. Therefore, the data is combined from its complex form into magnitude

only. Additionally, the HH polarization was selected for all tests.

3.2 Gabor Implementation

As discussed previously in chapters one and two, the visual cortex of mammals

has been found to be closely approximated by Gabor functions. Prior machine

image segmentation research has applied these filters to the texture discrimination

problem.(24, 3) A general purpose representation of the Gabor function defined by

Bovik and others (3) is presented below and is quite similar to that used by Mueller

and Fretheim (15) in VLSI reverse engineering.

h(x,y) g(x'y')exp[27rj(Ux + Vy)] (9)

where:

21

X = x cos 0 + y sin 0 (10)

y' = -xsineJ+ycoso (11)

x' and y' are the Gabor rotational coordinates with 0 referencing the filter's major

axis. The major axis refers to the orientation of the longer axis of the filter (non-

symmetric filters).

The Gaussian envelope with the aspect ratio A accounting for envelope variance

changes in both spatial directions is determined using:

g(x,y) = 1/(2Ao,2)exp[-((x/A) 2 + y2)/(2o2)] (12)

This thesis uses only circularly symmetric filters, A = 1. This symmetry elim-

inates the need to define 0 the major axis. As a result, g(x', y') reduces to

g(x', y') = 1/(27ro' 2) exp[-(x2 + y2)/(2a2)] (13)

and allows h(x, y) to be expressed as:

h(x, y) = 1/(2iro 2) exp[-(x2 + y2)/(2a2)] exp[27rj(Ux + Vy)] (14)

Converting the second exponential term using:

exp(jO) = cos0 + jsin0 (15)

gives the quadrature representation:

h(x, y) = 1/(2iw2)exp[-(x2 +y')/2 2](cos27r(Ux + Vy)] +jsn[27r(Ux + Vy)]) (16)

22

I7

Finally, breaking this into its in-phase and quadrature components, results in the

following component representations of Gabor filters:

h.(x,y) = 1/(27ra')exp[-(x' + y2)/2a'cos[2r(Ux + Vy)] (17)

h.(x,y)= 1/(27ra')exp[-(x 2 + y 2)/2Uo2 sin[2w(Ux + Vy)] (18)

Note, these filters are only approximately in phase quadrature. Their tunability

results from adjustments of the modulating sinusoidal frequency (F), Gaussian en-

velope standard deviation (a) and orientation bandwidth (B). The frequency F is

defined as F = V/U 2 + V2 , and bandwidth is defined below.

Bovik and others (3) presented methods for determining the best frequencies

and orientations to be used for image segmentation. They suggest choosing the

lowest fundamental frequency for periodic texture segmentation, and two largest for

aperiodic textures. (3:63) Due to the random nature of trees and fields the center

frequencies are selected based on the strongest peaks founded within one half of the

FFT plane. It is assumed here, this texture is highly "aperiodic".

Bovik suggests the following relationships can be used to determine the radial

bandwidth and standard deviation of the Gaussian envelope. The radial bandwidth,

B is determined by:

B = log2[(7rFAoa + a)/(7r FA - a)] (19)

where a = n(2)/2.

The orientation bandwidth, a is defined as

a = (a/(7rF)(2s + 1)/(2 B - 1)) = 1 - 2- B (20)

23

These bandwidth calculations are helpful in tuning the filters once the fre-

quencies are determined. Bovik suggests that as the center frequency is increased

the bandwidth should be decreased. This in turn requires increasing the number

of filters needed while reducing spatial resolution. The Bovik research used radial

bandwidths of 0.7, 1.0 and 1.3. These bandwidths are used to guide the selection of

Gabor filter bandwidths for this thesis.

3.3 Kohonen Clustering

The Kohonen network implemented here was written by Wayne Recla and

Gary Barmore.(1) Their network implements the Kohonen algorithm as described

by Dr. Richard Lippman. (12) This C programming language implementation pro-

vides numerous selections for neighborhood and gain reduction rules, and measures

dot product rule separation between input vector and network layer weights. For this

research, the code was modified to calculate a Euclidean distance measurement be-

tween input vectors and weights. Additionally as a baseline, the parameters selected

for training were set as follows:

1. Network size 16 x 16 nodes.

2. Training vector size 4 elements.

3. Input vectors 1048576 (a whole image of vectors).

4. Conscience value 1.5 (low conscience).

5. Initial seed of 8 (initialized weights are between 0 and 0.5).

6. Exponential gain reduction rule for neighborhood weight updating.

Figure 2 illustrates the Kohonen network. Shown here are the input vectors,

X,, at the bottom feeding connecting weights, wj.i. The connecting weights are

initialized to be within the range of the input vector elements (the data). The

Euclidean distance is calculated between the current input vector, [X1, X 2 , ... X,,],

24

x1 x2 2 Q

W2, 2W

and each connecting node to determine the winning layer node. The layei nodes are

shown in the rectangular region.

The learning or weight update rule is described below. The Kohonen weights

are updated by adding the previous weight, w-, to the product of the current gain,

7 and the difference between the current input vector, X, and previous weight, w.

w; + (i(x- w) (21)

The exponential gain reduction rule is determined using:

gain = 0.1 * (1.0 - count factor) (22)

where count-factor is the current iteration number divided by the total number of

training vectors. Calculation of the neighborhood size is calculated as the time

dependent range using:

time-dep-range = surface-constant[i -(count -
factor)] (23)

The surface constant is calculated by:

surf ace-constant = xsize2 + ysize2 (24)

where xsize and ysize are the number of nodes in each Kohonen dimension. For the

calculation of the gain constant the following is used:

77= 0.1(1.0 - iteration/total-number-of-vectors) (25)

Output from the Kohonen-net program prints periodic updates of the gain,

iteration number, range factor, average number of nodes eliminated, and node uti-

26

lization. The final output file contains the size in both dimensions, number of vector

elements and output Kohonen layer weights. This output file is saved in ASCII

format.

Once these output layer weights are saved, the nodes require calibration. The

calibration process uses a variety of files shown in the Appendix. What follows is

a list of these files to include a brief description of their operation in the Kohonen

training and calibration process.

* buildKohoin.c reads the number of files to be converted into vector elements,

file lengths, and file names from a data file. The resulting file is used to train

the Kohonen layer.

" buildcal.c is a routine which converts image coordinates to locations within the

Kohonen input vector file. The region is defined by its upper left and bottom

right coordinates. To run this program requires entering from the command

line prompt: buildcal input-vector-ile output-cal-file. The output-calfile is

saved in ASCII format.

" Auto-net.c reads the trained Kohonen layer weights, and a calibration file

then calculates their Euclidean distance. Each time a node wins its counter

is incremented. The output file is a Kohoncn "calibration layer" showing the

corresponding win count for each node using the given calibration set. This

process is repeated for each data class.

" Compare-net-nodes.c reads the filenames of the calibration layers to be com-

pared from a input data file. Compare -netnodes requires user input of the

Kohonen layer dimensions, threshold value, and image size. The threshold

value is used to establish arbitrary nodes. Nodes are labeled arbitrary when

the difference between the win count of any two classes is less than threshold.

Compare-net-nodes produces an output file containing the calibration layer

showing the node class association.

27

o and final-net.c reads the trained Kohonen layer weights, node class assign-

ments, and the training file. The layer weights were created by Kohonen-net,

node assignments were written by compare-cal-nodes, training file was created

by buildkohoin. Final-net reads the whole image vector file, calculates the

Euclidean distance between the current input vector and layer weights, de-

termines the winning node, and assigns a grayscale value to the winner. The

grayscale values are written to an output file for comparison with the template.

3.4 Classification Using Radial Basis Functions

The RBF used for this thesis was selected from the network choices available

in Dan Zahirniak's neural network environment.(2 6) Zahirniak's code provides four

RBF selections to initialize the hidden layer weights.

* Node at the data points

* Kohonen training

e K-means Clustering

* Center at Class Averages

The center at class averages is used for this research. These hidden layer weights are

linked to the output layer via matrix inversion. This routine initializes the hidden

layer using the first vector as a single node. This node has a preselected radius. If

the next vector is within this radius, the cluster center is updated. If not, a new

cluster is added using the present vector value as cluster center. Each of these nodes

are assigned class values when initialized. That is, the vector file must provide a

class value following each input vector. Training continues until no more nodes are

added. (26:3-23)

A complete description of this environment is presented in Dan Zahirniak's

thesis. (26) Figure 3 demonstrates RBF feature space clustering.

28

Feature Vector 2{,X ..[, " e tu e

-,Feature Vector 1

Node 1

Figure 3. Two Dimensional RBF Clustering Environment (23:34)

3.5 System Description

3.5.1 Introduction This section describes the processing used during this

thesis. Figure 4 shows the three paths taken. The path to the left shows Gabor

processing followed by thresholding and median filtering. This path is used to test

the separability provided by each Gabor image. The middle path shows the neural

network training implying both Kohonen and RBF processing. The path on the

right shows the steps taken to obtain image templates.

3.5.2 Building Templates To create image templates the following steps

were used. Once the images were converted into Sun format they were converted

into unsigned byte binary files and imported to a Macintosh for display. Using

available ground site photograpbs, image regions were converted to grayscale values

predetermined for each class. These grayscale images were saved and later used for

image comparison.

9.5.3 Applying Ga1 ,ors The technique used for segmentation of this im-

agery is based on frequency correlation of Gabor filters with SAR images. Image

29

Convert Display

to UNIX Detect.c SAR
Format Image

FFT

Image
Regions

SProcess Manually

Gabor.c With Image

ANN Truth

Threshold Display Display

&Median Segmented Image

Filter Image Truth

Evaluate

Segmented,
Images/

Figure 4. Block Diagram of Methodology

30

FFTs were used to determine which Gabor frequencies best fit the image texture.

Regions were selected from different missions and different frames then their FFTs

computed. Selected were the strongest two components for each class.

Early Gabor processing made use of the gabortf.c program written by Eric

Frethiem. This program, written in C, dynamically allocates memory to five arrays

for the whole Gabor/image correlation process. This program was modified to allow

for binary input and output, reading input data from a data file, requires entering

the input image file name and data file name from the command line. This is allowed

by the argc and argv commands of C programming. The modified routine is called

max-gbr-slct.c

Once the setup data is read, image blocks of 256 x 256 were read, and converted

to magnitude. The blocks are read from left to right and top to bottom. Once an

image block is in memory, it is correlated with each selected Gabor wavelet. It should

be noted that once the image block is read-in, its bottom row and right-hand column

are zeroed out. This makes allowances for the aliasing effects of the Gabor wavelet.(6)

Next requires the calculation of the two dimensional fast Fourier transform (FFT)

of the image. Fretheim's FFT.c routine written by Fretheim was linked to the

max-gbr-slct routine and performs all FFTs required for Gabor processing.

At this point, the maxgbr-slct program computes a wavelet using the data file

information provided as follows:

" number of frequency and rotation combinations

* wavelet window width

" wavelet window height

" type sinusoid (1 = cosine, 0 = sine)

" portion of the output filename

* and lists of the required frequencies, rotations, and standard deviations (both

x and y) used.

31

The frequency, rotation, and standard deviation list was read each time a 256 by

256 block was read.

This user provided data is used in the max-gbr-slct inner loops (rotation within

frequency). In other words, each frequency is held constant and used during cal-

culation of each wavelet rotation. Upon completion of each wavelet rotation, the

frequency is incremented and is held constant throughout the next rotation loop.

Additionally, during the calculation of the wavelet its array is remapped from the

center of the wavelet grid (typically 16 x 16, or 32 x 32) to the outer corners of a

256 x 256 zero padded array for frequency correlation.

Operating on images in this manner makes for interesting data input and out-

put problems. To allow for an expandable output file, a file was created and zero

filled for each rotation and frequency combination. Each file must be the size of the

resulting output Gabor files. This is allowed using the lseek command to move the

file pointer to corresponding image locations.

3.5.4 Preliminary Segmentation Evaluation and Additional Prepro-

cessing Following the Gabor/image correlation, the output files are converted to

unsigned byte and scaled to be between 0 and 255. This allows for evaluation of

the segmentation provided by Gabor processing. Using thresholding and filtering

techniques available on the Macintosh, Gabor images were analyzed. This is shown

in the left-hand path of Figure 3.

Next, combinations of multiple Gabor images were used to train a artificial

neural network. The original system plan was to implement a hybrid neural network

composed of a Kohonen unsupervised clustering layer and a RBF supervised classifi-

cation layer. Early results obtained using the RBF alone were substantial enough to

change course to clustering and classification using only RBFs. Limited results were

obtained for the Kohonen and are shown in chapter 4. The Kohonen implementation

is described in the following section.

32

3.5.5 Clustering the data using a Kohonen Network The next step

requires training and calibrating a Kohonen artificial neural network to help cluster

the data. The Kohonen training process requires data to be presented in a vectorized

fashion. To do this, numerous Gabored images were read and converted to vectors

of corresponding pixels. The total number of vectors available is simply the total

number of pixels. The number of vector elements is dependent upon the number of

Gabor representations chosen for the process.

Next, the calibration process performs a Euclidean distance measurement on

extracted chunks from the training file. These chunks are selected from represen-

tative image regions so the data class was known and monitoring of the Kohonen

output nodes was hoped to provide node classification. Multiple 64 x 64 pixel regions

were chosen and read from the training file using the buildcal. Once these regions

are extracted the auto-net.c routine tests the trained Kohonen layer weights and

outputs a file containing the win count of each node from the calibration process.

The compare-net-nodes routine compares calibrated nodes against a threshold. The

threshold is used to determine which nodes should be labeled arbitrary. The compar-

ison process determines the node class assignments. Using these node assignments,

final-net reads in the training file, calculates the Euclidean distance between each

vector and the defined nodes, and outputs a remapped grayscale segmented image.

3.5.6 Radial Basis Function Processing Selections were made from Za-

hirniak's neural net environment.(26) The netmenue.c routine contains the parame-

ters requiring selection. For RBF processing images were reduced to ease the training

process. Windows of sixteen by sixteen pixels were scanned for the maximum value.

The maximum values were then used to represent these windows. That is the files

were reduced form 1024 by 512 to 64 by 32. Training consisted of selecting 300

training vectors These were limited to shadow, trees and grass due to data set lim-

itations. These regions were extracted from one image for training and another for

partial testing. Partial testing provided output results from the RBF programming

33

environment. Netmenue also provides for running the net on the shrunken test

image. These results were compared to hand segmented images.

Output files from the RBF partial testing provides a summary of training

selections, test filenames, and percentage of correct responses for the given vectors.

The RBF run file output is compared pixel for pixel with the hand segmented image

and percentages are found for each data class.

The training set was limited to 300 vectors to allow timely processing of the

matrix inversion calculated for the hidden RBF layer. The center at class averages

training rule was selected. Testing image segmentation involved adjusting the sigma

threshold, average threshold, interference threshold and sigma factor parameters.

Chapter four discusses results of these selections.

34

IV. Experimental Applications and Results

4.1 Gabor Processing

4.1.1 Images Processed During This Research The images processed

during this thesis were:

" mission 85, pass 5, frame 27, horizontal/horizontal polarization (m85f27hh)

* mission 85, pass 5, frame 28, horizontal/horizontal polarization (m85f28hh)

" mission 98, pass 3, frame 08, horizontal/horizontal polarization (m98fO8hh)

" mission 98, pass 3, frame 09, horizontal/horizontal polarization kmg9&09hh)

" mission 98, pass 3, frame 11, horizontal/horizontal polarization (m98fllhh)

" mission 98, pass 3, frame 12, horizontal/horizontal polarization (m98fllhh)

Processing was typically performed on 2048 x 512 or 1024 x 512 images. Shown

below are the above listed images. All are shown as 2048 x 512 images, except

m98f12. Since only the HH polarization is used during this thesis, the images will

be referred to without the HH extension. This data set provides images composed

mostly of naturally occurring regions of grass, trees, and shadow. Some limited man

made data are available in frames m98f08 and m98f09. Both m98f08 and m98f09

contain corner reflectors and roads, and m98f09 contains a horse ranch at its center.

Image m85f27, shown in Figure 5, contains a section of trees in the center, field

on the left and right, and shadow in the middle.

Items of interest for image m85f28, shown in Figure 6, is the trail that cuts

across the top of the tree region (upper left), a large tree section in the image center,

field to the left and right, and shadow in the middle.

Figure 7 shows image m98f08. This frame contains: a pond in the lower left,

paved road through the middle, field to the left of the road, forest on the lower right,

35

Figure 5. Original SAR Log Mapped Image m85f27

Figure 6. Original SAR Log Mapped Image m85f28

tree farm between the forest and road, and a set of corner reflectors to the right of

the pond.

Figure 7. Original SAR Log Mapped Image m98f08

The most interesting image is m98f09 shown if Figure 8. This image contains

multiple man-made objects. Directly in the center is a horse ranch to include vehicles,

houses, barns, and sheds. In the lower right is a pond with some object in its upper

left corner. Additionally, other houses are located in the upper right.

36

Figure 8. Original SAR Log Mapped Image m98f09hh

Figure 9. Original SAR Log Mapped Image m98fllhh

Figure 10. Original SAR Log Mapped Image m98fl2hh

37

Images m98f11 and m98f12 are shown in Figures 9 and 10. M98f11 contains

two regions of trees in the both upper corners, a road through its middle, and field

in the center. Figure 10 is quite close to being a two class problem since it contains

mostly tree and field regions with only limited areas of shadow. Note image m98f12

was only extracted as a 1024 by 512 image hence the difference in size.

4.1.2 Basic Processing Methodology Due to image sizes of 2048 x 512

and 1024 x 512, processing was performed 256 x 256 or 128 x 128 blocks. Typi-

cally, multiple Gabor representations were generated during a single processing run.

Creating nine Gabor filtered images required approximately 45 minutes on a Sun4

Sparc station (assuming dedicated CPU processing). The procedures implemented

are described below.

Initially, the Gabor correlation process made use of Fretheim's gabortfl.c pro-

gram. This program reads an image block, calculates a Gabor filter, performs image

and Gabor filter frequency correlation then writes the resulting Gabor image file to

disk. If multiple Gabor representations were needed, the original image block was

held in computer memory, a new Gabor filter was calculated, and the correlation

process repeated. Operating on images in blocks required creating zero filled output

files of size 2048 x 512 or 1024 x 512 before Gabor processing. These files were

overwritten during processing.

4.1.3 Ad Hoc Gabor Filter Selection Early Gabor processing was per-

formed in an ad hoc manner and made use of the gabortfl.c program. The procedure

was to calculate numerous Gabor image representations as described above, and the

result displayed as a grayscale image. This is the threshold and median filtering

step shown in Figure 4. A Macintosh computer was used for display, and additional

image processing software was available to test Gabor images for their segmentation

properties.

Initially, filters were selected using integer frequencies and rotations. Frequen-

38

Figure 11. Image m98f08, Freq 2, Rotation 0

cies chosen ranged from one to seven cycles per window. Additionally, various filter

rotations were calculated using stepped increments of 15 degrees. All filters were cir-

cularly symmetric (same variance in x and y) 16 x 16 pixels. Later processing used

only 32 x 32 pixel filters. The majority of the images shown here were processed

using 32 x 32 filters.

Integer frequency representations often resulted in wave patterns superimposed

on the imagery, but with some of the original image distinguishable as in Figure(11).

Images were then processed using thresholding and median filtering then visually

evaluated for results. Thresholding and median filtering in this manner provided

region segmentation. That is different region classes were separated using threshold

setting.

Both figure 12 and 13 are examples of thresholding integer frequency Gabor

representations. These m85f27 images were processed using filters of 16 by 16 pixels

with a Gaussian standard deviation of 2 pixels.

Figure 12. Image m85f27, Freq 2, Rotation 0, threshold 132

39

Figure 13. Image m85f27, Freq 2, Rotation 0, threshold 142

Results to this point were marginal at best. It was noted very small (1)

frequency Gabor images provided better image reproduction. Also, reconstruction

seemed to be fairly independent, but not entirely, of the circularly symmetric filter's

spatial rotation. Better results were wanted prior to attempting ANN processing.

At this point, it was noted that image pixel values were quite large. Sometimes

as wide spread as ±30,000. These values were dependent upon the class of data they

represented. That is processing on naturally occurring textures (grass and trees)

resulted in values in the wanted ±hundreds range. However, when corner reflectors

or highly reflective objects were included, returned energy was quite large and greatly

expanded the dynamic range of the pixel values. Hence, the Gabor image became

excessively dark requiring equalization prior to display.

Up to this point, the standard deviation of the Gaussian envelope was held

constant at 2 (16 pixels/8). It was now believed, that finer a tuning would improve

image representation. With this in mind, an experiment using a larger variance of 4

was tried using both 16 and 32 pixel windows. As expected, changes in the variances

caused drastic variations in resulting pixel values. Additionally, the increased filter

size of 32 pixels provided less image detail than 16 x 16 pixel filters. Findings to this

point made it clear a better method was needed for determining filter frequencies

and rotations.

4.1.4 Using FFTs to Determine Frequency and Rotation Angles

Techniques found in the Bovik article (3:63) suggested two methods for determining

40

Gabor filter center frequencies. Suggested were:

* calculating image FFTs and selecting the two strongest peaks

* or convolving the image spectrum with a Gaussian and selecting the strongest

peaks.

The technique chosen made use of the Image-fft software package available

on WRDC's Macintosh computer. Analysis with this tool involved taking FFTs of

64 x 64 pixel blocks of selected image regions. The interest here was to determine

independent frequencies representing separate data classes. The Image-fit program

returns two windows. One showing the power spectrum density plot and the other

providing spectra information. That is, the results window showed relative power

(0 to 254), frequency (pixels/cycle) and angular location (0) of the power spectral

elements when the spectral element was selected.

For this FFT analysis, image blocks were chosen to included only pixels of

the class type to be analyzed. However, exceptions had to be made for roads, cul-

tural objects and corner reflectors. These objects often weren't more than 10 to 20

pixels wide or long. Originally, it was thought these overlapping areas would allow

selecting out of class frequencies in piace of those representing the desired class.

However, frequencies for roads, cultural zbjects and corner reflectors were found to

be less random and more strongly i with the frequency axes than naturally

occurring textures. For the man made obje_.s, the power spectrum window showed

significantly whiter power spectrums (dark being high spectrum values) containing

dark spots more strongly aligned with the two dimensional frequency axes. Results

showed roads, paved and dirt, were largely represented by the same frequencies and

orientations. In relation, roads that were basically paths worn into grassy areas by

vehicles had a more random frequency spectrum in both orientation and frequency.

Cultural objects and corner reflectors rang loudest at 0.500 cycles per 32 pixel win-

41

dow, and by no means were they represented by the extreme number of frequencies

needed to define the power spectrum for trees, grass and shadow.

The SAR imagery FFT analysis was performed across images and missions to

include the following: m85f27, m85f28, m98f08, m98f09, m98f11 and m98f12. An

attempt was made to find multiple frequencies for each class which were independent

of those composing other classes. A summary of the analysis is shown in Table(1).

Shown are frequencies where the spectrum contained the maximum value of

254 in at least one image and strongly represented (relative power spectrum value

of 100 or higher) in at least one other. As can be seen from Table(l), some of the

strong frequencies were consistent across classes. Namely, 0.500 cycles per window

(32 pixel window size) was representative of all data classes. This table shows class

type, frequency (cycles/window), rotation (degrees) and whether the frequency held

across images. The starred entries in the across image column are measurements

taken from only one image.

Using results presented in Table(l), nine frequencies were selected for Ga-

bor processing. The bandwidths were calculated using equation 19 and are shown

Table(2). Shown are frequencies (cycles/window), orientations (degrees), standard

deviations (number of pixels), window size (number of pixels) and calculated radial

bandwidths.

The frequerncy selections shown in Table 2 used Bovik's radial bandwidths

(0.7, 1.0 and 1.3) as guideline for selecting the bandwidths for higher frequency

processing.(3:60) Also, the Bovik article suggests when tuning Gabor filters, the ra-

dial bandwidth should be decreaseu as center frequencies are increased to maintain

spatial resolution.(3:60) Additionally, Bovik points out higher frequencies may re-

quire increasing the number of filters and at some point, namely 0.2 cycles / pixel,

the "filters may require sampling above that possible for the available image" .(3:60)

It was with this guidance the frequencies representations of Table 2 were calculated.

Attempts using frequencies higher than 1.5 cycles/window (32 pixels) often produced

42

Table 1. SAR Imagery Frequency Analysis

Class Type Freq (cycles/window) Rot (degrees) Across Images
Trees 0.500 0 or 90 Yes

0.707 45 or 135 Yes
1.000 0 or 90 Yes
1.118 63 or 153 Yes
1.414 ,'j or 135 Yes

Grass 0.500 - 0 or 90 Yes
1.000 0 or 90 Yes
1.800 146 No
2.120 135 No
3.040 9 or 81 Yes
3.900 140 Yes
4.611 13 or 77 Yes

Shadow 0.500 0 Yes
3.540 98 or 135 Yes
4.500 0 or 90 Yes
5.100 11 Yes

Roads 0Of0 0 Yes

0.707 135 Yes
1.580 18 or 108 Yes

Water 0.500 0 Yes
1.117 153 Yes

Culture 0.500 0 or 90 No*
1.118 26 No*
2.500 37 N-*

Corner
Reflector 0.500 0 No*

43

Figure 14. Freq 0.5, Rotation 0, Msn 85 Frame 27

Attempts using frequencies higher than 1.5 cycles/window (32 pixels) often produced

images that were essentially random noise.

Table 2. Tweaking the Bandwidths

Freq (cycles/window) Rot(degrees) a Window Size(pizels) Bandwidth
0.500 0 11 32 6.4104
0.707 45 11 32 2.9515
1.000 0 11 32 1.7640
1.414 135 8 32 1.7032
1.500 0 7 32 1.5838
2.000 0 4 16 1.1368
2.828 45 3 16 1.0656
4.000 0 3 16 0.7365
5.000 0 3 16 0.5846

The images for frequencies shown in Table 2, except for frequencies four and

five, are shown in Figure 14 through Figure 20. Notice in Figure 17 the Gaussian

smoothing caused by the Gabor. Images for frequencies four and five were consid-

erably more random than Figure 20. As a result these frequencies were eliminated

from further processing.

The boxiness of the Gabor images may have been noticed prior to now. The

larger boxes are 256 x 256 (or 128 x 128) blocks used during image processing.

The blackened squares are zeroed out regions which resulted from compensation for

Gabor filter aliasing.

44

Figure 15. Freq 0.707, Rotation, Msn 85 Frame 27

Figure 16. Freq 1.000, Rotation 0, Msn 85 Frame 27

Figure 17. Freq 1.414, Rotation 135, Msn 85 Frame 27

Figure 18. Freq 1.5 Rotation 0, Msn 85 Frame 27

45

Figure 19. Freq 2.0 Rotation 0, Msn 85 Frame 27

Figure 20. Freq 2.828 Rotation 45, Msn 85 Frame 27

From the results obtained in Figure 14 through Figure 20, it appears the band-

width relation defined by Bovik effectively defines the Gabor tuning characteristics

to provide high quality reduced speckle HH polarization images. That is once the

frequencies were selected the Bovik bandwidth equation provided proper selection

of the envelope standard deviation. Notice the decreased speckle in the first three

representations. With these results, the lower frequencies, up to frequency 2.828

cycles/window, were selected for the remaining processing.

Figures 21 through 23 demonstrate using the calculated frequencies, and a on

image m85f28. The results are similar to that obtained for image m85f27.

Figure 21. Image m85f28, Freq 0.500, Rotation 0

46

Figure 22. Image m85f28, Freq 0.707,Rotation 45

Figure 23. Image m85f28, Freq 1.000, Rotation 0

Figure 24 shows the original m98f09hh SAR image. Figure 25 through 31

show Gabor processing results for the frequency and rotation shown in each caption.

These images were equalized to improve their display quality to the level achieved

for m85f27 and m85f28. It was noted earlier, the inclusion of corner reflectors or

objects with good radar returns expanded the dynamic range of resulting images.

This is the case for both m98f08 and m98f09.

Notice once again above 1.5 cycles/window Gabc mages became quite inde-

cipherable.

Figure 24. Image m98f09

47

Figure 25. Image m98f09, Freq 0.500, Rotation 0

Figure 26. Image m98f09, Freq 0.707, Rotation 45

Figure 27. Image m98f09, Freq 1.000, Rotation 0

Figure 28. Image m98f09, Freq 1.414, Rotation 135

48

Figure 29. Image m98f09, Freq 1.500, Rotation 0

Figure 30. Image m98f09, Freq 2.000, Rotation 0

Figure 31. Image m98f09, Freq 2.828, Rotation 45

49

Figure 32. Tweaked Image m98f08, Freq 0.500, Rotation 0

Figure 33. Tweaked Image m98f08, Freq 0.707, Rotation 45

Figure 32 through 34 demonstrate using the lower three calculated frequencies

on m98f08. Once again the corner reflectors expanded the pixel value dynamic range,

so equalization was neoded to display these results.

Other experiments demonstrating good results are shown in Figures 35 and

36. These images were processed using 128 x 128 image blocks and Gabor filters

of 16 x 16 pixels. Importing images to the Macintosh computer, and processing

with thresholding techniques demonstrated thresholds could be defined for separate

image regions. That is cultural items such as the horse ranch, vehicles and corner

reflectors were usually segmented using relatively high thresholds. Other the regions

Figure 34. Tweaked Image m98f08, Freq 1.000, Rotation 0

50

Figure 35. Experimental Image m98f09, Freq 1.0, Rotation 0

Figure 36. Experimental Image m98f09, Freql.0, Rotation 15

were also segmentable by varying the threshold levels. Thresholding of the original

SAR images was investigated and proved to be an invalid segmentation technique.

Figures 35 and 36 were processed on image m98f09 using 16 x 16 Gabor filter,

and 128 x 128 image blocks. Both figures used a standard deviation of 4 pixels.

Notice upon comparison with Figure 27 using sixteen pixel windows provide better

image detail. These results were found while including these images into this final

draft. Distinguishable items are the building shapes, field textures and houses in

the upper right corner. These features were overlooked and hence not used in ANN

processing.

Figure 37. Threshold 121

51

Figure 38. Threshold 62

4 at

Figure 39. Difference

To test Gabor images prior to use as input features for neural networks, each

Gabor image was tested for threshold separability. These tests were performed on

each Gabor representation. This testing proved that simple thresholding following

Gabor preprocessing provides image segmentation. Due inconsistent values for sim-

ilar regions between images, thresholds weren't consistent across images. Even so,

it was found that separate thresholds could be defined for each major region (grass,

trees and shadow). Figure 37 through Figure 39 demonstrate segmentation of the

regions contained in image m85f28. Figure 37 had the grayscale level set to 121

to segment the tree area, Figure 38 at 62 to segment the shadow area and Figure

39 segments the field regions by taking the difference between Figures 37 and 38.

Similar results were obtained for images m85f27, m98f08, m98f09 and others.

4.2 Kohonen Processing

4.2.1 Overview The following resultz; were obtain,'d frccr- Kohonen training

sessions. Image m85f27 was the training image. This image contains three data

classes trees, shadow, and grass. The goal was to train on image m85f27 and test

52

the Kohonen layer with other images containing similar data classes. Only limited

amounts of cultural regions were available in the mission 85 and 98 data set, so

processing focused more upon images such as m85f27. Described below are the

procedures taken to train and calibrate Kohonen network layers.

4.2.2 Training and Calibration Training vectors were composed of the

lower four frequency Gabor representations from Table 2. Only four representations

were chosen to reduce the size of the training file. Training files were created by

converting image files to vectors using the buildikohoin.c program listed in the

appendix. Using pixel for pixel information, these vectorized files contained over one

million training vectors. Saved in ASCII format, these training files were often on

the order of 37 megabytes.

Kohonen layers were trained using the Barmore/Recla Kohonen-net program.

(1, 18) Following training, known image regions were chosen from the original image

and used to calibrate the Kohonen layer. Image coordinates, obtained using the

Image 1.30 software package on the Macintosh computer, were entered into the

buildcal.c program to create calibration files. Figure ?? shows an example of regions

selected from m85f28 for RBF training. Similar regions were selected from m85f27

for Kohonen training. The auto-net program used output Kohonen layers to count

the number of times each node won during calibration. Layer comparisions showed

many nodes were arbitrary. Shown below are several Kohonen layers demonstrating

results from Kohonen calibration.

53

Figure 40. Sample Training Regions

Kohonen Example One

f27shadowIII.cal f27trefsIII.cal f27fieldIII.cal

0 0 0 0 687 332 687 2910 1852 207 1852 360

0 0 0 0 332 332 332 2786 207 207 207 1677

0 0 0 0 687 332 687 291 1852 207 1852 360

0 0 0 4096 291 2786 291 0 360 1677 360 0

Kohonen Example Two

f27shadow-final. cal f27trees-final.cal f27field-final.cal

3844 78 0 0 0 0 0 4 0 0 0 0

47 0 0 0 0 0 52 131 0 0 87 199

0 0 0 0 74 153 359 390 0 585 1529 988

0 0 0 0 111 296 783 1616 72 297 228 111

These output Kohonen layers resulted from testing with vectors from known

regions of image m85f27. Notice in example one, the first three layers, contain more

than 4096 winning vectors even though only 4096 vectors were used for calibration.

This resulted from using to much conscience (1.5). The last three layers,example

two, were trained using very little conscience (5.0). The layers from example two

54

seem to imply this data is clusterable. These three layers were calibrated using

only 3969 vectors. Example two training and calibration show that shadow vectors

are clustered in the upper left portion of the layer. Trees and field nodes are more

arbitrary. The nodes in the lower right corner appear arbitrary, but establishing a

difference threshold could be used to extrapolate node class assignments. Comparing

the bottom .wo rows of f27trees-final.cal and f27field-final.cal it can be argued given

some arbitrary threshold that three of the four bottom nodes are tree nodes and the

whole secon' row from the bottom are field nodes. The exception in the bottom

row is the second node from the left. This node and the three in the upper right are

quite arbitrary.

Numerous Kohonen layer sizes were trained on image m85f27. Networks larger

than four by four contained too many nodes where many nodes were zero during the

calibration step.

Using these results an image was converted back to grayscale and is shown

in figure 41. This image was remapped from a Kohonen layer trained using too

much conscience. Even so, comparing Figure 41 with the original Figure 5 shows the

regions are somewhat segmented. The white areas are trees, black grass, and gray

shadow.

Figure 41. Remapped Grayscale Image m85f27

At this point, Dan Zahirniak's radial basis function network (26) was tested and

demonstrated good results. This in combination with Kohonen calibration difficulties

eliminated the Kohonen network from further processing.

55

4.3 Radial Basis Function Processing

It was decided to reduce the training vector data size. The Gabor files were

reduced by finding maximum values within a sixteen by sixteen block. This reduced

the 1024 by 512 images to 64 by 32. These were converted to vectors and used to

train the RBF network. Shown in Figure 42 is an example of the imagery used for

RBF testing. This reduced 64 x 32 image was enlarged by 800 percent for display

and inclusion here. Figure 43 shows the affect of selecting the maximum value from

an 8 x 8 window. This result is 128 x 64 and has been enlarged by 400 percent

for inclusion here. Images sampled by 8 x 8 windows were not process, but rather

are shown to suggest processing could continue using these reduced images. Both

images represent 1024 x 512 portions extracted from image m85f27.

Figure 42. Sampled Image Using Max Value From 16 by 16 Block

Two techniques were used to evaluate Gabor/RBF segmentation. The first

used a pixel for pixel comparison between the reduced RBF images and hand sege-

mented templates. The second, used data obtained from the RBF network envi-

ronment. The RBF network data files are percent correct results obtained during

network training.

AY1 RBF processing used the center at class averages selection using the fol-

lowing parameters to adjust the network:

56

Figure 43. Sampled Image Using Max Value From 8 by 8 Block

* average threshold

* sigma threshold

* constant interference threshold

* sigma factor

Thle average threshold is similar to vigilance.(26) This parameter is used to

determine addition of new clusters within data classes. If the data is within the

average threshold and of the same class, its center is updated to center on the cluster.

Sigma threshold is used to set the RBF spread or standard deviation. The sigma

factor is applied to reduce the sigma threshold after all the nodes have been added

to the network. Sigma factor in other words controls the rate of sigma threshold

reduction. The interference threshold determines allowed overlap of cluster regions

between classes.

4.3.1 Comparison With Image Templates For these comparisons, test

files were converted to vector files with arbitrary class assignments appended to

the end of each vector. These files were selected as "run files" in the netmenue

57

Table 3. RBF Trained Image Msn 85 F28

Test Image 1 Agree Shadow % Agree Trees % Agree Field Total % Agree
M85F27 61.2 76.6 73.1 72.9
M85F28 78.2 89.6 93.1 88.0
M98F08 0.0 69.2 37.4 46.3
M98F1l 0.0 47.8 52.6 51.3
M98F12 0.0 34.9 63.0 39.6

routine.(26) Network processing determined vector (pixel) class assignments and

converted each vector to a corresponding grayscale value.

Comparison with hand segmented templates was performed twice. The first

used non-scaled Gabor values from the sampled image set. The second used scaled

versions of mission 98 images. Image m85f28 was the training image. One hundred

vectors representing the three classes were selected and used for training. These

regions are shown in Figure 40.

To train and run the net, appropriate filenames were entered into netmenue.c,

and training parameters were chosen. The initial parameters (baseline settings) were:

" sigma threshold, 4.0

" average threshold, 0.1

" interference threshold, 0.4

" sigma factor, 0.1

Both comparisons were made using unsigned byte grayscale values. Compari-

son using unscaled data was first made between image templates and unfiltered RBF

outputs. A second comparision was performed after using a 5 by 5 median filter on

RBF outputs. Tables 3 and 4 show results of each comparison.

The poor results from images F08, Fl and F12 resulted from Gabor coefficient

values drastically out of range of those obtained for images F27 and F28. Throughout

58

Table 4. RBF Trained Image Msn 85 F28 After Median Filtering

Test Image % Agree Shadow % Agree Trees % Agree Field Total % Agreement
M85F27 58.8 94.7 80.8 84.0
M85F28 86.1 95.6 89.2 93.2
M98F08 - 61.3 57.8 43.5
M98F11 - 43.7 53.3 50.6
M98F12 - 23.7 85.0 33.9

Table 5. Scaled Result, RBF Trained Image Msn 85 F28

Test Image % Agree Shadow % Agree Trees % Agree Field Total % Agree
M98F08 0.5 99.5 35.2
M98F11 61.9 81.7 76.1
M98F12 62.7 77.4 65.2

processing, images from Mission 98 provided out of line results. A Lambertization

process (11) would probably provide the localized scaling necessary to allow Gabor

processing to hold across mission sets.

A quick fix approach was taken to bring the mission 98 values in line with

mission 85 values. The results shown are from scaling each mission 98 file by a

factor of !. Using the same netmenue parameters, the RBF results are shown in

Table 5 and 6. Using this simple scaling improved results in tree and field categories,

but eliminated detection of the shadow regions. Additionally using this technique,

m98f08 remainded unclassifiable; however, images m98f11 and m98f12 came closer to

being in line with results obtained for image m85f27. Median filtering also improved

image comparisons between m98fll, m98f12 and hand segmented templates.

Figures 44 through 46 show hand segmented templates used for image com-

parisons.

59

Table 6. Scaled Result, RBF Trained Image Msn 85 F28 Median Filtered

Test Image %Agree Shadow %Agree Trees % Agree Field Total % Agree
M98F08 _________ ________ _______
M98F11 -65.9 87.2 81.3
M98F12 -73.6 90.9 j 76.5

Fiur.4..an.Sgmntd.mae..52

..

U.....I.....
..
..

Fiur.5....egenaio.f.28.rane.n.2

........ 60

....

....................,>

.....................

Figure 46. RBF Segmentation of F28, 5 x 5 Median Filter

Other test images are shown in the Appendix. For each case these templates

are followed by its resulting RBF segmented image then a 5 x 5 median filtered

result. All the RBF outputs were generated using m85f28 as the training file using

the baseline settings mentioned earlier. The mission 98 images are results following

the quick fix scaling.

4.3.2 RBF Network Results Using 300 training vectors from image m85f28

and 300 testing vectors form m85f27 network parameters were varied to test the af-

fects of each. The percentages used here were based on RBF network class selections

versus read input classes.

This processing was performed using image m85f28 as the training file and

m85f27 as the test file. Processing was performed while adjusting netmenue's aver-

age threshold, sigma threshold, sigma factor and interference threshold parameters.

Figures 47 through 51 show the results of this processing. Here the settings for these

parameters were:

* average threshold 0.1

* sigma threshold 2.0

61

a interference threshold 0.4

e sigma factor 0.1

One parameter was varied while holding the others at the baseline setting.

Figure 47 shows the effects of varying average threshold form 0.1 to 1.0. Best results

were obtained using thresholds below 0.3 and at 0.6. The results of the 0.6 threshold

setting is probably be attributed to close match with the data as the clusters were

shrunk. Figure 48 shows the nodes required to cover the training data. Results were

as expected and agree with those found by Zahirniak.(26:5-11) That is, by increasing

the average threshold less RBF clusters are needed to cover the data space. Figure 49

shows the results from varying the sigma threshold form 0.1 to 10.0 for both testing

and training image results remained approximately constant. Figure 50 shows the

affect of varying sigma factor between 0.1 and 1.0. Results, for this data set, seem

to indicate results are fairly constant when varied between 0.1 and 0.8. Results

above 0.8 show the percentages quickly drop to zero. The interference threshold

was allowed to vary between 0.01 and 1.0. This plot seems to imply varying this

paiameter between 0.1 and 0.8 for the training set provides percentages in nearly

the same range. The peak at 0.6 once again may imply closeness of fit between the

parameter settings and the data.

Shown he., are some resulting Gabor/RBF segmented images. Figure 52 is

the result from setting the RBF baseline parameters as mentioned above and setting

the average threshold to 0.6. Figure 53 is the result following a 5 x 5 median filter.

Figures 54 and 55 show results from using the baseline settings with sigma

threshold set to nine.

62

100

f1~7 -

f20

9 5- - - --0- - -

90 - - - - - - - - - -

75 --------- ---- -------- ------------------ -

8 0 - - - - - - - - - - - . . .- - - - - - - - - -

75 - - - - - - - - - - - - - - - -- - -v - - - - - - - - -

50
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Average Threshold

Figure 47. Percent Agree vs Average Threshold

28-

5 0 - - - - - -- - - - - - - - - - - - - -

40

5 35

20

15

10

0.1 0?2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Average Thresh~old

Figure 48. Number of Nodes vs Average Threshold

63

100 T

70 L

0 1 2 3 4 5 6 7 8 9 10
Sigma Threshold

Figure 49. Percent Agree vs Sigma Threshold

100 1r

f 28
9 0 - - - - - - - -

6 5 - - - - - - - -

60 -- - - - -- - - - -- - - -

0) 55 - - - - - - - - - -- - - -- - - -

35 ...5.

35 - -

30

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Sigma Factor

Figure 50. Percent Agree vs Sigma Factor

64

10095 ---- ---......... ------- f..-:. . .- = i. k. .

8 5 -- - - -- - - - -- - - - -------- .-- -- -- .. . --------...

8 0 -. ---....

7 5----.--- -----!
7 0 -- -- - -- - - - ------ ------ -- ::. ,;. . - ;.........

6 5 .. .--- ----- .. -- - - - ------ ---- -- - --.. I. ----..... .

5 50'---- -- .-........

550 - - - - - 4 ------------0
U

4 5 ----- --------------------- ----------- ---- -- "
4 4 0 -- - -- --- ----------..........- -----..........--

" 3 5 -- -.... ... --- - - - - - - - - - -- - - --...

p• N
3 0 --- -- --- -- -- -- ---------- ---------- ---------- -------------------..'"

2 5 -.. .. --.. . --.......
2 0 ------------- -----... ------- --------

5 -- --- --- --- --- -- --- --- ---I......

0j
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Interference Threshold

Figure 51. Percent Agree vs Interference Threshold

...............

Figure 52. Average Threshold of 0.6, Trn F28 Test F27

65

.iii~!!iii

.ii~~iii ...

.... '.' .

.........

Figure ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~. 53.vr.eTrehl.o.,.r.2.Ts .27 5M danFle

.... i;;i iiiiil11;iii iii: : : ..

Figre 3. vegu e Thesol RB f egmenttin oF27 T raine F27 5 F28M da Fle

66

........................... ..ii i i~!!!iiw 1-ii~iiiiiiiiiiii ii~ ii~ii

Figure 55. RBF Segmentation of F27, Trained on F28, 5 x 5 Median Filter

67

V. Conclusions and Recommendations

5.1 Introduction

This research investigated the use of Gabor functions and neural networks for

segmentation of high resolution (1 foot by 1 foot) polarimetric SAR imagery. The

interest was to determine methods suitable for separating image regions such as

forest, field, shadow, road, water, and culture. The following questions were those

to be answered during this work.

* Is there a particular orientation, pitch or combination of the Gabor filter(s)

that will correlate well with trees, and still others with roads?

" How are these frequencies, rotations, and combinations selected?

" What size Gabor filter provides best segmentation of this imagery?

" What is the best method to train the Kohonen network for maximum separa-

tion?

" Is there a particular Kohonen neighbor and conscience rule which combines to

quicken or increase the separation provided by this type net?

" How is the Kohonen network calibrated?

* Does a Kohonen / radial basis function hybrid network provide automatic

calibration of the Kohonen and data classification?

* What are the proper training features for the network?

Frequency and rotation selections were made using FFTs of image regions.

Frequency analysis showed coefficients were somewhat overlapping with some fre-

quencies being more strongly oriented to certain classes. Processing demonstrated

that frequencies of below approximately 1.5 cycles per window (32 pixels) provided

68

the best Gabor results. Results also seem to indicate that filters of 16 pixels are bet-

ter for culture selection; however, more investigation is required here. Segmentation

of naturally occurring areas was provided using only four cosine Gabor frequency

and rotation combinations operating on only a single SAR polarization. Using vari-

ous rotations of circularly symmetric Gabor filters had little effect on Gabor image

results tested in early processing. This was determined visually prior to defining the

final frequency and rotation values shown in Table 2.

Results obtained from Kohonen training demonstrate potential for their data

clustering. These networks are difficult to train by the techniques used here. Unless

a better method is available, this type network should not be used.

Results obtained from the RBF were significant. Percentages of over 80 percent

were found across images. Results as high as 76 percent w-re obtained using simple

scaling on data well out of range from the training data see Table 5. Using RBF

network control parameters allowed selection of small average thresholds (a vigilance

type parameter) to obtained RBF testing results above 80 percent while using only

18 RBF clusters. These results demonstrate effective results are possible using Gabor

preprocessing and RBF classification.

5.2 Further Research

Below are listed as suggestions for further research.

* First step is to perform localized normalization such as Lambertization to allow

consistent scaling across images. This was shown effective by Joe Brickey

when operating on the imagery using a fractal based, correlation dimension

estimation process.(4)

* Continue testing Gabor functions on a reduced data set as with the RBF

training performed here. This data reduction seems to provide good results

69

and reduces processing time. The host technique might be sampling the image

and filter prior to Gabor correlation.

" Test other filter sizes (4 by 4 or 8 by 8). Larger filters provided good results for

naturally occurring regions, but smaller filters (16 by 16 pixels) seemed better

for finding cultural borders.

" Continue using the RBF network. Once the normalization problem is sol7-ed,

the RBF should provide high percentage segmentation results across images.

" Add other polarizations to the Gabor preprocessing as features for neural net

processing.

70

Appendix A. Other RBF Results

These results are a continuation from the hand segmentation comparison sec-

tion.

71

Figure 56. Hand Segmented Image m85f27

Figure 57. RBF Segmentation of F27, Trained oi F28

72

!iiiii~iiiiiiiiiiiiiii~iiiiiiiiiil............................

Figure 58. RBF Segmentation of F27, 5 x 5 Median Filter

iiiiiii iill

iii iiBE
Figure59. Hnd Seg enteis aem8l

Wil

,~~~...... ,............ H- ,..

..........
Figure61. RF Segentaton ofF..........dian.ilte

..

.. ,..i
.... iiiii!!!iiii~i~i~iiiiii........ ..iii

..:H . H : :: ::: :::: ::: ::: :::: : ::.. :. . : .

.
.......

i i

Figur 63. BF Sgmenttionof F ., Trined.n.F2

...7.

Figure 64. RBF Segmentation of F12, 5 x 5 Median Filter

76

Appendix B. Software

B.1 Gabor Code

* Program: max-gbrslct_2048.c *
* Author: Al L'Homme *

* Modified by :*
* Revision: 18 September 1990 *
* Variation of the gabortfl.c program where the wanted freq *
* and rotation are read from a datafile. *

/******Modified 15 October to find the maximum value for each window
correlation and output that value for each pixel within that window.*/

#include <stdio.h>
#include <math.h>
#include <string.h>
#include <fcntl.h>
#include <ctype.h>
#include "fft_256.c"

#define FORWARD 1
#define BACKWARD -1
#define PI 3.141592653589793
#define MAX_PIC 256
#define MAX-WIDTH 4096
#define MAX-HEIGHT 512
#define CELL-OFFSET (MAXWIDTH - 2 * MAX_PIC)
#define SEEK-SET 0
#define SEEKCUR 1

*Reading in the data file. Here wide and high are the filter dimensions. They *

* are used to zero out the bottom and right edges (aliasing) *

void Readblock(sar-file, seek-cell, real, imag, wide, high)

int sar-file;
long seek-cell;
double **real;

double **imag;

int wide;
int high;

int i, j, row-bytes = 2 * sizeof(float);

77

int next..rou offset = CELL-OFFSET * sizeof~float);
int bytes-.read, real-.bytes-r.ead. imag-bytes..read;

float foo;

if Clseek~sar-file. seek..cell. SEEK-.SET) ==-1L)

fprintf(stderr, "Seek error in Read-.block\n");

exit(1);

bytes-.read =0;

for Ui = 0; i < MAX-PYIC; i++)

for~j=0; j < MAX_.PIC; j++)

real-bytes-read = read~sar..file, kfoo, sizeof~float));

real~i][j] = (double)f 00;

imag-bytes-read = read(sarjfile, kf oo, sizeof (float));

imag~i] Ej] = Cdouble)foo;
bytes-.read = real-bytes..read + imag-bytes..read;

if (bytes-read != row-.bytes)

fprintf~stderr, "Read error in Read~block\n");

printfC"bytes-read %d7 row-.bytes = %d\n",bytes..read, row-.bytes);

printf("i = %d j =%d \n", i, j);
exit~l);

if(lseek(sarfile, nextrow-offset, SEEK..CUR) ==-1L)

fprintf~stderr. "Seek error in Read-block\n");

exit(1);

for~i = 0 ;i < MAXPIC; i++)

for C(j 0; j < MAX-PIC; j++)

real~i][j) = sqrt~real[i][j] *real~i](j] + imag[i][j] *imag[i]lj]);

imag~i] AU] = 0.0;

for (j=MAXPIC - high; j < MAX-PYIC; j++)

for Ci = MAX-PIC - wide; i < MAX-PIC; i++)

78

real~i][j] = 0.0;

fft2Creal,imag.HAX-PIC.FORWkRD);

return;

void rotate(gab-rray~degrees~x~size~y-size,omega.ftype~sig-x,sig-y,count)

double **gab..array;
float degrees;
mnt x-size, y-.size;
float omega;

int ftype;

float sig-x;
float sig-y;
mnt count;

mnt i,j;
int l.m;

double theta;
double x,y,tx~ty;

double x..prim- ,y..prime;

double gtfo;

theta = ((double) degrees) /180) *PI;

for (j = 0; j < MAX-PIC; j++)
for (i =0; i < MAX-PIC; i++)
gab-.array[i][j) = 0;

t= x-size;
ty = Y-size;

printf ("gabor-array\n");
for Q(= y-size/2; j < y..size + y-size/2; j++)
for Ci = x-size/2; i < x-.size + x-size/2; i++)

1 = X-size - i

if (1 < 0) 1 += MAX-PIC;
m = y-size - j

if (m < 0) m += MAX-PIC;
X = i; y j;

x..prime =x*cos(theta) - y*sin(theta) - txscos~theta) + ty*sin(theta);
y-prime =x*sin(theta) + y*cos(theta) - tx*sin(theta) - ty*cos(theta);

gab-arrayl][mJ 255 / (2 * PI * sig-.x * sig-x) *
gtf(x-prime,y-prime.sigx,sig.omega,ftype);

79

if~count == 0)

printfC"%f\n" ,gab-array~l) Em));

double gtf~x,y,sigma..x,sigza-ycycles,gtype)

double x,y;
float sigma-x, sigma-y;

float cycles;
imt gtype;
f

double f-of-x;
f-of-x (double)expC-O.5*C(x/sigma-x)*x/sigma.x)+Cy/sigma..y)*(y/sigma-y)));

/* If gtype I then f-of-x is a cosine if 0 then is sine. */

f-of-x *=(double) sinC(x*PI* cycles)/2*sigma-x) + (P1/2 *gtype));
return Cf-.of..x);

filter-max

void filter..max(array, wide, high)
double **array;

mnt wide;
int high;

int num-filter-blocks, nun-filter-row, num-.filter-col;
mnt filter row, filter..col;
long temp, filterblock.pointer;

double max;

mnt i, j;

nun-filter-row = MAX-.PIC /high;
nunmfilter-col =MAX-PIC /wide;
num-filter-blocks = (MAXPIC * MAX_PlC) /(wide *wide);

for(filter-row = O;filter-row < numnjilter-row; filter-.row++)

for(filter_col = 0;filter-col < num-.filter-.col; filter-.col++)

filter-block-pointer = Cf ilter.col * wide + filter-row * high*

MAX..YIC);
temp = filter-block-pointer;

max = -1000.0;

for~j = 0; j < high; j++)

80

for(i = O;i < wide; i++)
{

if(array[temp] > max) max = array[];
temp++;

}
temp+= MAX-PIC - wide;

}

temp = filter-block-pointer;

for(j = 0; j < high; j++)
{

for(i = O;i < wide; i++)
{

array[temp] = max;
temp++;

}
temp += MAX_PIC - wide;

}
}

* MAIN FUNCTION *

void main(argc, argv)
int argc;
char *argv[];
{

int k;
char in-fname[60], out-name[40], datfile[40];

int num-freq-rotation-combos;

int freq.rot-cnt,
int in-file, out_file[641;

int file-cntr, cnt-files;

int width, length, type;
int i,j;

int sign, row-offset, output;

long write-cnt = 0;

long block-pointer;
long out-pointer;

long output-size;

unsigned block-row, blockcol, num-blockcol, numblock-row;

double **a;

double **b;
double **c;

double **d;

81

double *xtra;

float freq, rot, al;
float **e;
float *also;

float sigma-x;

float sigma-y;
double max, min;
double rtemp, itemp;

char f ile..nae [40);

FILE *gd;

if (argc == 3)

strcpy(in-fnane,argv El]);
strcpy(dat-file,argv [2]);

else

printf('Usage: gabor-select input-.filel data..file\n');
exit Cl);

j0O;
a=(double **)callocCMAX-PIC,sjzeof~xtra));
b=(doilble **)calloc(MAX-PIC~sizeof(xtra));
c=Cdouble **)calloc(MAX-PIC~sizeof(xtra));

d=Cdouble **)callocCMAX-PIC,sizeof~xtra));

e=Cfloat **)calloc(MAX-PIC,sizeof (also));

ifC!a 11 !b 11 !c 11 !d 11 !e) j=1;
for(i=O; i(MAX-PIC;i++)

{ ~] (o b e * c l o (A X P C s z o ~ o b e)
a~i]=Cdouble *)calloc(MAX-PIC,sizeof(double));
b[iJ=Cdouble *)calloc(MAXPIC,sizeof~double));

c[i]=(double *)callocCMAX-PIC,sizeof~double));

e[i]=(float *)callocCMAXPIC,sizeof~float));

if(!a[i3 11 !bti) 11 !c~il 11 !d[i] 11 !e[i]) j=l;

if Cj)

printf('Error! Calloc can't allocate enough memory\.n");

exito);

82

ifC(gd=fopen~dat.file,"r11)) == NULL)

f
print! ("Can't open data-file");

exit (-1);
I
fscanf(gd,'/d" ,&num-.freqrotation-combos);

fscanf~gd,"Yd",&width")
fscanf~gd, "/d',&length);

/*type needs to be 0 for odd symmetric gabor and 1*!
/* for even symmetric gabor functions. *

fscanf~gd,"%d",&type);

f scanf (gd, "U".s, out-.name); /* Reads the SAR file to be operated upon*/

* Start the READ loops*

k = 0; /* Used for reference when opening output files. *

ifC(in-file = open(in-.fname, O-RDONLY)) -1

print! ("Error opening input file \n");
exit(i);

/* These next two loops select the file block to operate upon.*/

num..block-row = MAX-HEIGHT /MAX-PIC;
num-block-col = MAX-WIDTH /(2 * MAX..PIC);

for~block_row=0; block_row < num_block.row; block-.row++)

for(block.col=0; block-col < nuin..block..col; block-.col++)

block-pointer = Clong)(block.col * MAXPIC * 2 + block-row t

MAX-PIC * MAX-.WIDTH) * sizeof~float);

Read-.block~injfile, block-pointer, a, b, width~length);
file-cntr = 0;

freq-rot.cnt loop start

for Cfreq-rot-cnt = 0; freq..rot.cnt < num-freq-.rotation-combos;
freq-.rot..cnt++)

fscanf(gd, "%f' ,&freq);
fscanf(gd,"%f",&rot);

fscanuf~gd,'/.f11.&sigma-.x);

83

fscauf(gd.'Yf" ,&sigmajy);

/* print! C"freq = %f \n rot = /4\n sigma-~x = %/f sigma-y=

%f\n",f req, rot, sigma-x., sigma-.y);*/

al =0.0;
sprintf(file~name,"%4.3f'/s%4.3f'.freq,out-lame. rot);

if Ck==0)

if ((out-file[file-sntrj = open~file.name. O3CREATI
O3WRONLY .0644)) =~-1)

printfC'Error opening output file \n");

exit~l);

output..size = (MALHEIGHT * MALWIDTH)/ 2 * sizeof (float);

/* printf("k = %/d\n file-sntr = Xd\n output-size = %ld\n', k

file_cntr, output-size);*/

write_cnt = write(outjfile~file-cntrJ. tal ,output-size);

I

rotate~c~rot,width~length,freq~type,sigm-zsigma-y~k);

for~i = 0;i < MAX_.PIC; i++)

for(j = 0;j < MAX-PIC; j++)

d~i]j] = 0;

Frequency correlation of the image with the jilter

fft2(c,d,MAX-PICji2RWARD);/* Taking the FFT of the Filter*/

for Qi = 0; j < MAXJ'IC; j++)

for Ci = 0; i < MAXSPIC; i++)

rtemp = c~ij [ji * a~iJ [jl - b~iJ [j] * di jJ]
itemp d~iJ [j] * a~iJ [j] + c~iJ [j] * b~iJ [j];

c~i]j] = rtemp;
d~il EjJ = itomp;

fft2(c,d,MAX-PIC,BACKWARD);

filtermax(c,width. length);

84

max =-100.0;
min = 1000.0;

for QC= 0; j < MAX-.PIC; j++)
for (i = 0; i < MAXPIC; i++)

c~i][j] 1=max;

/* c~i]Ej] += 128;*/

/* Converting to float for output *
for~i =0;i < MAX..YIC; i++)

for~j = 0;j < MA'-?IC;j++)

e~i) Ej) = (float)c~i] [j);

out-.pointer = Clong)Cblock.col * MAX_PlC + block..row
MAX-PIC * MAX..WIDTB/2) *sizeof~float);

/*printf('le[i] Ej) values\n') ;*/

for~i =0; i < MAXPIC;i++)

for~j = 0;j < NAX.YIC;j++)

/*printfC'%f\n' 3 e~i) j));*/

if~e[i)Ej] > max) max = e~iJ [j];
if (e[i]E[j] < mini) mini = eiJ [j);

printf("'maximum = Vf\n", max);
printf("'minimum = %f\ng1 mini);

lseek(out-file~file-cntr). out-.pointer, SEEK_.SET);

row-offset = (MAX-WIDTH / 2 - MAX-PIC) *sizeof (float);

output = MAXPIC * sizeof(float);

for~i = 0; i < MAX-PIC; i++)

write-.cnt = write(outjfile~filecntrJ ,ke[iJ [0),output);

85

if Cwrite..cnt != MAX-PIC ;izeof (float))

printf ("Error! Writing wrong amount of data.\n"l);
printf ("write~cnt = %d\n", write..cnt);

if Clseek(out-file[file-cntr), row-.offset, SEEK-CUR) =-)

fprintf~stderr, "Seek error in Write-.block\n");
exit (1)

file-cntr++;

}/* Ends the freq-rot-cnt loop *
k = 1;
} /* Ends the inner read file loop *

} /* Ends the read file loop *

fclose~gd);
close(in-fname);
} /* Ends the main function *

86

* Program : fft.c
* Written by: Eric Fretheim •

* The user needs to define MAX-PIC to be the size of the FFT. For example *
* for a 256 x 256 FFT, MAX PIC is 256. Same as for a one dimensional FFT.*
* When wanting a 2-D FFT call the fft2 routine. One dimensional uses the
* fVt routine. The picc and ipicc elements of the fft2 routine are for
* real and imaginary processing. Similar for the fft routine. The n *
* defines the size of the fft. The dir is used to tell
* fft.c which FFT direction, forward or reverse. Refer to the max-gbr-slct
* program for an example. •

#define MAX-PIC 128 /* MAX-PIC must equal n */

fft2(picc, ipicc,n,dir)

double **picc;
double **ipicc;
int n; /* image width */
int dir;
{
double pic[MAXPIC+1];
double ipic[MAXPIC+1];
int i,j;

/* printf ("Start Fourier transform --- rows.\n"); */

for (i = 0; i < n; i++)
{
for (j = 0; j < n; j++)
{
pic[j+1] piccEi][j];

ipic[j+11 = ipicc[i][j];
}
fft(pic,ipic,n,dir);

for Qj = 0; j < n; j++)

{
picc[i][j] = pic[j+I];
ipicc[i][j] = ipic[j+1];
}
}

for (Q = 0; j < n; j++)

{
for (i = 0; i < n; i++)

f
pic[i+1] picc[i][j];
ipic[i+i1 = ipicc[i] [j];

}
fft(pic,ipic,n,dir);

87

for Ci = 0; i < n; i..+)

f
picc~i) Ej) = pic[i+1);
ipicc (ii [j] ipic~i+1];

return;
I

fft~fr,fi,n,dir)

double *fr;

double *fi;

int U;
jut dir;

double tr=0, ti=0;

double wr=O, wi=O;
double el=O, a=0;

int 10O, pO;

int mr=0;
mnt 1=0;
mnt k=O;
iut m=0, nn=0;

mnt step=O;

if (dir < 0)
for (i 1; i < n+1; i++)

fici) -fici);

mr = 0;
nnu = n -1
for (m 1; m <= nn; m++)

1 = n/2;
while (1 + mr > nni) 1 =1/2;

mr= mr%l + 1;
if (myr > m

tr = fr[m+1j;
fr[m+1] fr~mr+1j;
fr~mr+1) tr;

ti = fi[m+1J;

fi(m+1) fi~mr+1);
fi[mr+i) ti;

I

while (l < n)

step = 2*1;

88

.1 = 1;
for (m = 1; a <= 1; m++)
f
a = 3.1415926535 * (double) (1-m)/ el;
wr = cos~a);
vi = sin(a);
for Ci = ; i <= n; i += step)

+

k = i
tr = vr*fr~j) - ifj]
ti = wr*firj] + wi*fr~j];

fr[j] = -fr~k) - tr;
fi~j) = fith) - ti;
fr~k] = fr~k) + tr;
fi~k) = fi~k] + ti;

1 =step;

if Cdir < 0)
for Ci =1; i < n+1; i++)
f
f r Ci f fr Ci)/n;
f i i] =-f i Ei]/n;

return;

89

B.2 Kohonen Calibration Code

* Program: build-.koho-in.c

* Written by: Al L'Homme and Joe Brickey*
* Date: 6 September 1990*
* This program converts multiple data files into a single file of vectors. *

* Each vector is composed of corresponding pixel elements from each file.

#include <stdio .h

#include <sys/staL..h>

#include <math.h>
#include <fcntl .h>

#include <unistd .h

FILE *outfile;
FILE *in-file;

void main~argc, argv)
mnt argc;
char *argv[];

char in-fname [40]. out-.fname [40];

char in_datnames[20J [40]; 1* Allows for input of 20 files. *

mnt num..files, in-data-filesE2OJ, number-reads;
long mnt filelength;
float file[20) [4096];
float files-minE2048);
long bytes-.read, row-.bytes, counter;

float normal-.f act, output;

mnt i, j, k, 1, x, y, z;
float sum, min, max;

if(argc != 3)

printf ("Usage : build-koho_ in in-data-file out-.file\n");
exit (1)

else

/* in-data-file provides the information to the fscanf requests below *
strcpy(in-.fname~argv l]);

strcpy(out-fnane,argv[2]);
if ((in.f ile = f open(in-fname,"r")) == NULL)

f
printf("Error opening input file \n");
exit(l);

I

if((outfile = fopenout-.fname,'w")) == NULL)

90

}

if((outfile = fopen(out_fname,"w")) == NULL)
f
printf("Error opening output file \n");
exit(i);

}

* Reads information from data file: 1) # of files to be converted to vectors *

* 2) Length of each file (Assume all files equal length). *

* 3) Filenames *

fscanf(in-file,"d",num-files);

/* filelength is the number of bytes in the file */

fscanf(in-file,"%ld",kfilelength);

/* Loops to open files for converting into input vectors */

for(i = 0; i < numfiles; i++){
fscanf(in-file, "%s",&in-datnames [i] [0));
/*printf ("%s\n",in-datnames [i]); */
if((in-datafiles[i = open(indatnames[i], O_RDONLY)) -1)

{
printf("Error opening input file %d \n",i);
exit(l);

}
}

row-bytes = 2048 * sizeof(float); /* image width times type size*/

number-reads = (filelength / row.bytes';

min = 3500;
max = -25.000;

/* This loop finds the minimum value in all input files to be vectorized.

This value will be used to scale and normalize the kohonen input data. */

for(i = 0; i < numjiles; i++)
{

printf("reading file %s", in-datnames [i]);
for(j = 0; j < number-reads; j++)
{

read(in-data-files[i], &files-min[O], row-bytes);
for (= 0; 1 < 2048; 1++)
{

if(filesminil] < min) min = files-min[l];

91

if(filesmin l] > max) max = files-min[l];
}

}

/* printf("minimum value = %f\n", min);
printf("maximum value = Yf\n", max);

/* This loop closes then opens files to reset pointer to file beginning. */
for(i = 0; i < numfiles; i++)
{

close(in-datafiles [i]);
}

for(i = 0; i < num_files; i++)
{

if((indatafiles[i] = open(in-datnames[i], ORDONLY)) -1)
{

printf("Error opening input file %d \n",i);
exit (l);

}
}

/* This starts the vectorization process of the input files. */

/* Reading data-files a row at a time. */
for(i = 0; i < numberreads; i++)
{

for(j = 0; j < num-files; j++)
{

read(in-datafiles[j], file[j], row-bytes);
/*for(k=O; k<512; k++)
printf("filedata = Yf\n", file[jI [k]) ;*/

}

/* Sums and normalizes the vectors. Note that min was determined
" as the minimum value across all elements of the input data files.
" Here looping on the number of vectors within an image row and
" finding a normalization factor for each vector.

for(y = 0; y < 2048; .++)
{

sum = 0.0;

for(x = 0; x < numfiles; x++)
{

/* file[x] [y] = IileEx] [y] - min;*/
sum = (fil[x][y]) * (file[xJ[y]) + sum;

92

I

normual-.fact = I / sqrtCsum);
/*printfC'Xf\n", normal-fact) ;*/
for~i 0; x < numn..files; X++)

output = f ile EX)EyJ;
output = normalfact * :file Ex] y];
/* printf("output value = %'.output);*/
fprintf~outiile,"%i\n" ,output);

/* printfC"i = %d\n",i); *
}/* Ends the reading loop. *

fclose(infile);

close~outfile);

93

* Build-cal.c
* 20 August 1990*
* Builds calibration files for Kohonen net.*
* Written by: Al L'Bomme and Joe Brickey

include <math.h>
* include <stdio.h>
* include (time.h>

#define SEEK-.SET 0
#define SEEK-.CUR 1

float input [512] [1024) [15];
float output [64] [64] [15);

void main~argc,argv)
mnt argc;
char *argv[];

FILE *fpl,*fp2;

mnt xstart ,ystart ,xend,yend, numjinputs;
mnt num..blocks-.x, n~um-blocks.y, windousize, num-total;
long starting-point, tempin, tempout;
long start-.x-.block, end-x-block, start.y-.block, end-yblock;
mnt image-width, image-height, top-.y-.coordinate;
mnt i, j ,k, x, y. z, n;

char out..namefile[40), in-.name..file [40];

if(argc == 3)

strcpy(in-name-file,argv[1]);
strcpy(out.name-.file,argv[2]);

else

printf ("Usage: build-.cal input..file .trn outputfile accn)
exit(1);

fpl = fopenin.name-.file, "r");

printfC"\n Input starting coordinates and ending coordinates: x1 yl x2 y2\n")
scanfC"%d %d %d Yd",kxstart, Aystart, kxend, Syend);
printf("Input number of files (number of vector elements)\n");
scanf("%d", knum-inputs);

94

printf ("Enter window size.\n");
scanfC"%d", kwindousize);

printf ("Enter image width and image height.\n");
scan! ("%d %d", &image-width, &image..height);
/*printf ("starting to do preliminary calculations\n");*/

start-x-block = (int) xstart / windowaize;
end-xblock (int) rend / windousize;
nun-blocks-x =end..x-.block - start..x-.block;
top-.y-.coordinate = image-height -1;
start-4.block = Cint) ((top-ycoordinate - ystart) / windowsize);
end.y..block =(int) ((top-.y..coordinate - yend) / windowsize);
num.blocks-y -end-.yblock - start-y..block;

/*printi ("starting to read input\nL");/
for~i = 0; i < image-height; i++)

f
/*printf("entered first read loop\n");*/
for(j = 0; j < image-.width; j++)

/*printf("entered second read loop \n");*/

for(k = 0; k < numinputs; k ++)

/* printf("entered third read loop");*/

I scan! (fpl ,"'f ", kinput EiJ[j] Eki);

/*printf ("finished reading input") ;*/

i = start-..block;

while~i < starty.block + num-blocks-y)

f
/* print! ("start 1st while\n");*/

j = start-x-..block;
whileQj < start-zblock + naln-blocks.x)

I
/*printf ("start 2nd while\n") ;*/

k = 0;
while~k < numjinputs)

f
/*printf("start 3rd while %hd %~d %d '/,\n",i,j,k,input~i)[jJ[kl);*/
output Ei - start-y-blockj Ej - start.x-block] ER] = input [1] Ej) E];

95

/*printf(C'start writing out,,);*/

fp2 = open(out-name_ file, "w");

for(i = 0; i < num-blocks-y; i++)

for~j =0; j < num-~blocks~x; j++)
f
for(k = 0; k < num-inputs; k ++)

fprintf(fp2,"%f \n", output Ei] [j] Ek));

fcJlose(fpl);
fclose(fp2);

96

" Program: Auto-.net.c*

" Written by :Al L'Houime and Joe Brickey*

include <math.h>
include <stdio.h>

inzlude <time.h>

float weights [256][C16];
float input[16];

struct layer

f
float output;
mnt numvins;
.T layerval[256];

void main~argc~argv)
mnt argc;
char *argv[J;

f

FILE *fpl ,*fp2 *fp3;

int inputloop;
float temp;
mnt yc,x,y,xsize,ysize, number-inputs,num-cal-vectors;
mnt ic, net~size,i~j;
float scalefactor,min,max;
char in~weight[60], in..Aata[60], out..asc[60J;

if(argc == 5)

strcpy(in..yeight,argv[i]);

strcpy Cin..data *argv [2]);
strcpy~out..asc ,argv [3]);

else

printf("Usage: auto-net input..file.net input-data output-file.cal

number-of _cal-vectors \n");
exit(i);

num-cal-vectors = atoi~argv[4J
/*printfC"Enter number of calibration vectors\n');

scanf("%d" ,knum-cal-vectors) ;*/

fpl = fopen(in..yeight, llrl);

97

f scaxif fpl. "%d %d %d", kxsize , kysize, &number- inputs);
net-.size = size * ysize;

for(yc= 0;yc < net-.size ; yc++)

for(ic=0; ic < number..Anputs; ic++)

fscaiif~lpl,'%f 11 weights[yc] [ic));
/*printf("%f ", weights Cyc] ricB;*/

fp2 f open(in-data, "r");
for(i=0;i < net..size;i++)

f
layerval[i).numvins = 0;

I
for(inputloop=O ; inputloop < num-cal-vectors ;inputloop++)

for(j = 0; j < number-inputs; ++j)

fscanl Cfp2,"% '".,&input Ej]);

for(yc= 0;yc < net-.size; yc++)

temp = 0.0;

for~ic=O; ic < number-i~nputs; ac++)

f
temp = temp + (weights~ycJ~ic) - input[ic])*Cweights~ycl[ic]

-input~ic]);

layerval~yc].output = temp;

I

min 30.0;

max = 0.0;
for(yc = 0; yc < net-size;yc++)

f
if(layerval[yc] .output < min) min = layerval~yc] .output;
if(layerval[ycJ.output > max) max = layerval[ycJ.output;

I
scalefactor = 1 / (max - min);
for(yc =0; yc <net-size;yc++)

temp =layerval~yc] .output;
layerval[yc].output = ((temp - min) * scalefactor);

98

for~yc =0; yc < net..size;yc++)

if (layerval~yc) .output ==0) layerval~yc] .numwins =layerval~yc] .numwins + 1;
I

printf("\n\n Output Kohonen Surface Winning \n\n");
for(x=0;x< y~iZe; X++)

for~i = 0; i < xsize; ++i)

f
printfC"%d "l,layerval~x* xsize +i) .nuvrwins);

I
printfC"\n');

f3= fopen~out..asc, "w'6);

fprintf (fp3, "%s\n\n\n" ,out-asc);

for~x=0;x< ysize; x++)

for~i = 0; i < xsize; ++i)

fprintf(1p3,'%d lllayerval~x *xsize +i].nunzvins);

fprinti Cip3 , "\nl);

f close (1p1);
fclose~fp2);
fclose~fp3);

99

* compare-.net-nodes.c
* 10 October 1990*
* compares kohonen layers
* Written by: Al L'Homme and Joe Brickey

* include <math.h>
* include <stdio.h>
include <time.h>

#define SEEKSET 0
#define SEEKCUR 1

mnt input [10] [256];
int output [26];
mnt counter [5];
mnt class [5) [256);
void main~argc,argv)
mnt argc;
char *argv E];
f
FILE *fpO. *fpl,*fp2,*fp3,*fp4, *ifp[10];
mnt num-nodes, numn.side, x, y, result, threshold;
mnt image-width, image-.height, numclass, max;
char data-file[40] * out-name-iilel[40] ,outname~file2[40], in-.file-names[10) [40];

if~argc == 5)

strcpy~data..file,argv[1]);
strcpy(out-name-.filel,argv[2]);
strcpy~out-name-f.ile2.argv[3]);

else

printfC"Usage: compare data-.file I ile.nodes iile.region nun-class\n");
exit Cl);

num-class = atoi~argv[4]);
fp0 = fopen(data.file, "r");
for~x = 0; x < num..class; x++)

iscanf~ipo, "1%s", &in-f!ile-names[x] [0]);
if C(ifp[x] = fopen(in.:!ile.names[x], "r")) ==NULL)

f
printf ("Error opening input file %d \n",x);
exit~l);

/* Assumed square layer. *

100

print! QInput Dimension of Output Kohonen Layer Cint)\n');
scant ("%d". knum-.side);
printf(C'mreshold to be used for classifying node (int)\n");
scanf C%d, &threshold);
printC("Input Image Dimension width height Cint)Cint)\n');
scanC'"%d %d'. kimage-.height, &image..width);

nulm-nodes = num..side * num..side;
for(y=O; y < num-.class; y++)

for(x=O; x < nm..mnodes; x++)

fscanfifp~y) ,'%d'. kinput~y] Er]);

/* Finding which node wins most for a given class .*/
for~x=O; x < nmmnodes; x++)

max =input [0] E];
for~y =0; y < nm...-class; y++)

if(max < input~y] [xi + threshold)

max = input Ey] r];
output Er] = Y

for~x = 0; x < num_class; x++)
f
counter(x] = 0;

I

/* Counting number of nodes that win for each class, and finding its location.
Location is the node number. From zero to num-.nodes minus one. *

for~y = 0; y nm..class; y++)

for~x=0;x < nujn..nodes; x++)

if (output~x ==x]

claso~y]Ecounter~y]] = x
counter~y] =counter~y] +1;

fp3 =fopen(out-.name-.filel, "w");
fprintf~fp3, "%d\n!/d\n*/d\n", image-.height, image-.width, num..class);

101

for~x =0; x < nil..-class; x++)

iprinti Clp3, "%d\n".,coumter [x));
I

for~x =0; x < num-class; x++)

for~y = 0; y < coiinter~x]; y++)

fprintf (1p3 , "%d\n, class Cx][yJ);

I
I

fp4 = fopen~out-zname_ file2, "w');

for~y = 0; y < nuin-side; y++)

for~x = 0; x < inum-side; x++)

fprintffp4."/.d 11, output[y * numside + x]);

printfC'%d ", output~y * num-side + xJ);
I

fprintf(fp4,'\n 08);
printfC"\n');

102

* final-net.c 17 Aug 1990
* Written by: Joe Brickey and Al L'Homme

include <math.h>
include <stdio.h>
* include <time.h>
*include <fcntl~h
float weights [256] [16);
float input[16] ;
unsigned char output[2048 *512);
struct layer

float output;
mnt numwins;
} layerval[256J;

void iain~argc,argv)
mnt argc;
char *argv[);
f

FILE *fpl,*ip2,*ip3;

mnt inputloop, out-.file;
mnt num..per..class [256];
float temp;
long image-.size, count;
mnt yczxy,z~xsize,ysize, niumber-inputs, gray.scale-f.actor;
mnt ic, net~size,i,j,k, winner, num-class, image-.height, image-.width;
float scalefactor ,min,max, grayscale-.factor;
char in-.weight[60], in-assign[6o] ,in-data[60J, out..usb[60];
mnt class [10] [256];

if~argc ==5)

strcpy~in-weight ,argv [1]);
strcpyin-.assign,argv[2]);
strcpy~in-data,argv [3]);
strcpy(out.usb,argv [4]);

else

printfQ"Usage: final-.net input..ile .net assign.nodes data. asc
output..file.asc\n");

exit Cl);

fp1 = f open (in-.we ight, r)

facanf~fpl,'Yd %d %d", Axsize , kysize, &nuniber-inputs);

103

not-size = aize *ysize;
for(yc= 0;yc < not-size ; yc++)

for(ic=O; ic < number-inputs; ic++)

fscanf(fpi.,%f , &eights~yc] [ic]);
/*printf ("Vi 1, weights Eyc) ic]); */

fclose(fpI);

fp2 = f open (in-assign, lr");
!scanfCfp2,"%d %d %d", &image..width, &image-.height, knum-class);
for~x = 0; x < num-.class; x++)

facaniiP2,1%d", &xium..per-.class Er]);
print! C"%d' ,num-per-.class [x));

for(x = 0; x < num-class; x++)

for~y=O; y <num-.per-.class~x]; y++)

fscanf (fp2 , %d' ,&class Er] y]);

grayscale-.factor = 255 / (num-.class - 1);
printfC"%d' .grayscale-factor);

image-size = image-wyidth * image-.height;

fp3 = fopen~in-data, 0r");

ior~inputloop=O ; inputloop < image-.size ;inputloop++)

for(j =0; j < number-inputs; ++j)

fscanf(fp3,"%f ".&kinput~j]);

for(yc= O;yc < net-.size; yc++)

temp =0.0;

for~ic=O; ic < numnber-.inputs; ic++)

tamp = temp + (weights~yc)[ic] - input~ic))*Cweights~ycj[ic) input~ic]);
layerval~yc).output = tamp;

104

min = 5000.0;
max = 0. 0;
for~yc = 0; yc < net..size;yc++)

f
if(layerval[yc).output < min) mini = layerval[yc].output;
if Clayerval[yc].output > max) max = layerval[yc).output;
I

scalefactor = 1 / (max - mini);
for~yc =0; yc <net..size;yc++)

temp =layerval~yc].output;
layerval~yc).output = ((temp -mini) *scalefactor);

I
for~yc = 0; yc < net-.size;yc++)

if Clayerval[yc).output == 0)

winnier =yc;

I

for~x = 0; x < num-class; x++)

for~y =0; y < nin..perclass[x); y++)

if Cuirner ==class~x)Ey])

output [inputloop) (unsigned char) (x *grayscale-factor);

if(out-file = open(out.usb, O..CREAT I 0.WRONLY ,0644)) -1)

printf("lerror opening output file \n");
exit (1)

count = rite(out~file, output, image..size),
if(count != image-size)

printfC'Error writing file \n");
exit (1)

fclose~fp2);
fclose~fp3);
close(out.file);

105

Bibliography

1. Barmore, Gary D. Speech Recognition Using Neural Nets and Dynamic Time
Warping. MS thesis, AFIT/GEO/GENG/88D-1, School of Engineering, Air
Force Institute of Technology (AU), Wright Patterson AFB OH, December 1988.

2. Bastiaans, Martin J. "A Sampling Theorem for the Complex Spectogram, and
Gabor's Expansion of a Signal in Gaussian Elementary Signals," Optical Engi-
neering, 20:594-598 (1981).

3. Bovik, Alan C. and others. "Multichannel Texture Analysis Using Localized
Spatial Filters," IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 12(1):55-73 (January 1990).

4. Brickey, Joseph L. Fractal Geometry Segmentation of High Resolution Po-
larimetric Synthetic Aperture Radar Data. MS thesis, AFIT/GE/ENG/90D,
School of Engineering, Air Force Institute of Technology (AU), Wright Patter-
son AFB OH, December 1990.

5. Daugman, John G. "Uncertainty Relation for Resolution in Space, Spatial Fre-
quency, and Orientation Optimized by Two-Dimentional Visual Cortical Fil-
ters," Journal of the Optical Society of America, 2(7):1160-1169 (July 1985).

6. Fretheim, Eric J., "Discussions With Eric Fretheim."

7. Friedlander, Benjamin and Boaz Porat. "Detection of Transient Signals by the
Gabor Representation," IEEE Transactions on Acoustics and Signal Processing,
37(2):169-180 (February 1989).

8. Gabor, Dennis. "Theory of Communication," Journal of IEEE, 93:429-457
(1946).

9. Jones, J. P. and other. "Information Management in the Visual Cortex," Science
(1985).

10. Kabrisky, Matthew and Steven Rogers, "Lectures on Pattern Recognition:
Scene Analysis," 1989. School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, Fall 1989.

11. Lambert, L. C. Evalution and Enhancement of the AFIT Autonomous Face
Recognition Machine. MS thesis, AFIT/GE/ENG/87, School of Engineering,
Air Force Institute of Technology (AU), Wright Patterson AFB OH, 1987.

12. Lippmann, Richard P. "An Introduction to Computing with Neural Nets,"
IEEE ASSP Magazine, pages 4-22 (April 1987).

13. Martin, T. and others. "A Distortion-Invariant Pattern Recognition Algo-
rithm," Computer Vision, Graphics, and Image Processing, 31 (7):50-66 (July
1985).

106

14. Moody, John and Christian Darken. "Learning with Localized Receptive
Fields." In Proceedings of the 1988 Connectionist Models Summer School, pages
133-143, New Haven CT: Yale Computer Science, 1988.

15. Mueller, Michael and others. "Gabor Transforms to Preprocess Video Images
for Back-Propagation," Unknown (Unknown).

16. Nowlan, Steven J. Max Likelihood Competition in RBF Networks. Techni-
cal Report Technical Report CRG-TR-90-2, Toronto Canada: Department of
Computer Science, University of Toronto, February 1990.

17. Porat, Moshe and Yehoshua Zeevi. "The Generalized Gabor Scheme of Im-
age Representation in Biological and Machine Vision," IEEE Transactions on
Pattern Analysis and Machine Intelligence, 10(4):452-468 (July 1983).

18. Recla, Wayne F. A Study in Speech Recognition Using a Kohonen Neu-
ral Net, Dynamic Programming, and Multi-Feature Fusion. MS thesis,
AFIT/GEO/GENG/88D-1, School of Engineering, Air Force Institute of Tech-
nology (AU), Wright Patterson AFB OH, December 1989.

19. Rogers, Steven K. "Tutorial Text Abstract: Introduction to Biological and
Artificial Neural Networks for Pattern Recognition." Unpublished Notes for
Neural Networks Class, School of Engineering, Air Force Institute of Technology,
Fall 1989.

20. Ruck, Dennis. "Multisensor Target Detection and Classification," Proceedings
of SPIE Electro-Optics Conference, 37(2):23-31 (April 1988).

21. Stowe, Francis Scott. Speech Recognition Using Kohonen Neural Net-
works, Dynamic Programming, and Multi-Feature Fusion. MS thesis,
AFIT/GE/ENG/90D, School of Engineering, Air Force Institute of Technol-
ogy (AU), Wright Patterson AFB OH, December 1990.

22. Tarr, Gregory L. Dynamic Analysis of Feedforiard Neural Networks Using
Simulated and Measured Data. MS thesis, AFIT/GE/GENG/88D, School of
Engineering, Air Force Institute of Technology (AU), Wright Patterson AFB
OH, December 1988.

23. Thom,-.s, Scott G. Angle of Arrival Detection through RBF Artificial Neu-
ral Network Analysisi of Optical Fiber Intensity Patterns. MS thesis,
AFIT/GE/ENG/90D, School of Engineering, Air Force Institute of Technol-
ogy (AU), Wright Patterson AFB OH, December 1990.

24. Turner, M. R. "Texture discrimination by Gabor Functions," Biological Cyber-
netics, 55:71-82 (January 1986).

25. Webster, Michael A. and Russell L. De Valois. "Relationship Between Spatial-
Frequency and Orientation Tuning of Striate-Cortex Cells," Journal of the Op-
tical Society of America, 2(7):1124-1132 (July 1985).

107

26. Zahirniak, Daniel R. Characterization of Radar Signals Using Neural Networks.
MS thesis, AFIT/GE/ENG/90D-, School of Engineering, Air Force Institute of
Technology (AU), Wright Patterson AFB OH, December 1990.

108

Vita

Captain Albert P. L'Homme was born on 28 Nov 1958 in Bremerhaven, Ger-

many. He graduated from Leto High School in June 1976. He entered the United

States Air Force in January 1977 and graduated from missile systems analyst techni-

cal school in August of 1977. Following training, he was assigned to the 19th Bomb

Wing at Robins AFB where he served from September 1977 until April 1983 as a

missile systems technician and munition operations controller. While being spon-

sored under the Airmen's Education and Commissioning Program (AECP), May

1983 - May 1986, he majored in electrical engineering at the University of Central

Florida and received a Bachelor of Science in Engineering in May 1986. Following

graduation, he received his commission through OTS in August 1986. Fort Meade,

Maryland was his next assignment where he served with the 6940th Electronic Secur-

tiy Wing as a project nanager and project engineer for design of advanced avionic

communications security equipment from September 1986 until April 1989. In De-

cember 1988, he was selected to attend the School of Engineering, Air Force Institute

of Technology in the communications/pattern recognition field.

Permanent address:
6803 Wilshire Court
Tampa, Florida 33615

109

REPOR1 DU (UMIENIAT!GN 04M "J"wN' 0"04 ()1:,

'iJI - F~ T 1 tvi A'NO T S COVERED)
December 1990 Master's Thesis ______

~I' -- - I I ~. N(.,NUMBAIERS1

G~abor Filters and Neural Networks for Segmentation of Synthetic Aperture Radar

Imagery

Albert P. L'Hormc, Capt. USAF -
r .~ JHinGj ORGAJIZA i ION

M Pi*CRlT NUMBIER

Air Force Institute of Technology. WPAFB OH 45433-6583 FT(IE /9D3

i~' '~ 'I *1, PONSORMCG/ MONITOPIN6

WRDC/AARA, WPAFB OH 45433 ENYEORNJMR

i*- 7 7, fl7!" /b 14SHIBUTION CODE

Approved for Public Release; Distribution Unlimited.

SThis research investigates Gabor filter and artificial neural networks for autonomocssgetto of (1foo by 1
foot) high resolution polanimetric syntheic aperture radar (SAR). Processing invnlved frequency correlation between the
SAR imagery and biologically motivated Gabor functions. Methods for selecting the Gabor tuning parameters frm the
endless choices of frequency, rotation, standard deviation and bandwidth are discussed. Using these parameters, resulting
Gabor correlation images were reduced In speckle, and more detailed. This research used cosine Gabor functions and
operated on single polarization HH magnitude data Following selection of the appropriate Gabor features, multiple Gabor
representations were generated and converted for ANN training. Networks investigated were t Kohonen and radial
basis function (RBF) algorithms. Provided are results demonstrating a Kohonen network calibration techniqueanho
combination of Gabor processing and RBF networks provide scene segmentation.

1 IIIIMS15. NUMBER OF PAGES

Gabor Filters, Gabor Functions, Synthetic Aperture . ia, Polarmetric, Segmentation, 117
Kohonen Neural Networks, Radial Basis Functions s e ir / CT9)j. PIECD

1/ 1,7Htj1rY CLASSIFICATION 111, SICURITY (I ASSIFICATIOr4 il SFCURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

UnlsiidUnclassified t Unclassified I UL

GENERAL INSTRUCTIONS FOR COMPLETING SF 298
The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave Blank) Block 12a. Distribution/Availablity Statement.
Denote public availability or limitation. Cite

Block 2. Report Date, Full publication date any availability to the public. Enter additional
including day, month, and year, if available (e.g. limitations or special markings in all capitals
1 Jan 88). Must cite at least the year. (e.g. NOFORN, REL, ITAR)

Block 3. Tvoe of Report and Dates Covered.
State whether report is interim, final, etc. If DOD - See DoDD 5230.24, "Distribution
applicable, enter inclusive report dates (e.g. 10 Statements on Technical
Jun 87 - 30 Jun 88). Documents."

Block 4. Title and Subtitle. A title is taken from DOE - See authorities
the part of the report that provides the most NASA - See Handbook NHB 2200.2.
meaningful and complete information. When a NTIS - Leave blank.
report is prepared in more than one volume,
repeat the primary title, add volume number,
and include subtitle for the specific volume. On Block 12b. Distribution Code.
classified documents enter the title
classification in parentheses. DOD - DOD - Leave blank

DOE - DOE - Enter DOE distribution categories
Block 5. Funding Numbers. To include contract from the Standard Distribution for
and grant numbers; may include program Unclassified Scientific and Technical
element number(s), project number(s), task Reports
number(s), and work unit number(s). Use the NASA - NASA -Leave blank
following labels: NTIS - NTIS - Leave blank.

C - Contract PR - Project
G - Grant TA -Task
PE - Program WU - Work Unit Block 13. Abstract. Include a brief (Maximum

Element Accession No. 200 words) factual summary of the most
significant information contained in the report.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing Block 14. Subject Terms. Keywords or phrases
the research, or credited with the content of the identifying major subjects in the report.
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Pages. Enter the total

Block 7. Performing Organization Name(s) and number of pages.
Are(eaL Self-explanatory. Block 16. Price Code. Enter appropriate price

Block 8. Performing Organization Report code (NTIS only).
Number, Enter the unique alphanumeric report
number(s) assigned by the organization Blocks 17. - 19. Security Classifications.
performing the report. Self-explanatory. Enter U.S. Security

Classification in accordance with U.S. Security
Block 9. Soonsornaelitri lany. Regulations (i.e., UNCLASSIFIED). If form
Names(s) and Address(es). Self-explanatory. contains classified information, stamp

Block 10. Sponsoring/Monitorina Agency, classification on the top and bottom of the page.

Report Number. (If known)
Block 20. Limitation of Abstract. This blockBlock 11. SupDlementary Notes. Enter must be completed to assign a limitation to the

information not included elsewhere such as: abstract. Enter either UL (unlimited) or SAR

Prepared in cooperation with...; Trans. of To (same as report). An entry in this block is

be published in When a report is revised, necesry if e tr i t b i

include a statement whether the new report necessary if the abstract is to be limited. If

supersedes or supplements the older report. blank, the abstract is assumed to be unlimited.
Standard Form 298 Back (Rev. 2-89)

